

Beaverlodge Scenario BIOTA WG January 2010 Jan Horyna State Office for Nuclear Safety Czech Republic

Introduction

The purpose:

- Predicting impacts from ionizing radiation to species of lakes in the Beaverlodge and Athabasca Region
- To estimate output activity concentration in reference species from given radionuclide concentrations in water and sediment
- ➔ To conduct an initial radiological assessment
- To determine absorbed weighted dose rates for reference species
- ➔ To interpretate the results in terms of risk

Approach

The fresh weight activity concentrations of radionuclides in biota are predicted from water activity concentrations using equilibrium concentration ratios (CR)

 $CR = \frac{Activity \ concentration \ in \ biota \ (Bq \ kg^{-1} \ fresh \ weight)}{Activity \ concentration \ in \ water \ (Bq \ l^{-1})}$

Approach

The weight activity concentrations of radionuclides in sediment could be predicted from water activity concentrations using distribution coefficients (K_d) given as ratio of activity concentrations in sediment and in water:

 $K_d (l \text{ kg}^{-l}) = \frac{Activity \text{ concentration in sediment (Bq kg}^{-l} \text{ dry weight)}}{Activity \text{ concentration in water (Bq l}^{-l})}$

Input Data

Geometry and mass of species of interest in the Phase I modeling exercise

	Geometry (mm)	Mass (g)
	lengthxwidthxdepth	
White Sucker	450x150x100	1191 ww
Lake whitefish	436x140x100	1362 ww
Chironomus riparius	3.4x1.7x1.5	0.00012-0.0002 ^{dw}
Pisidium sp.	2.5x1.5x1	0.0009-0.0016 ^{dw}

Input Data

Radionuclide concentrations in water-summary

[Bq/L]	Pb-210	Po-210	Ra-226	Th-230	U-238
mean	7.5E-02	2.4E-02	2.8E-01	3.4E-02	1.9E+00
median	5.0E-02	2.0E-02	4.0E-02	1.5E-02	1.9E+00
minimum	2.0E-02	5.0E-03	5.0E-03	1.0E-03	2.4E-03
maximum	3.4E-01	6.0E-02	2.2E+00	1.2E-01	7.2E+00

Input Data

Radionuclide concentrations in sediment-summary

[Bq/kg]	Pb-210	Po-210	Ra-226	Th-230	U-238
mean	1.1E+04	1.2E+04	6.8E+03	1.1E+04	4.0E+04
median	4.7E+03	2.1E+03	1.2E+03	9.1E+02	1.5E+03
minimum	6.0E+01	5.0E+01	1.0E+01	2.0E+01	1.3E+01
maximum	5.3E+04	5.1E+04	5.8E+04	5.9E+04	7.8E+05

- Concentration ratios and distribution coefficients have been adopted for purposes of the exercise from ERICA Database
- →ERICA have contained no explicit data for species followed within the Beaverlodge scenario
- ERICA CR`s have been adopted for taxonomically similar organisms of the scenario

Scenario organism =>	ERICA organism
White Sucker	Benthic/Pellagic Fish
Lake Whitefish	Benthic/Pellagic Fish
Chironomus riparius	Insect Larvae
Pisidium sp.	Bivalve Mollusc

Concentration ratios for White sucker and Lake Whitefish as taken from ERICA database

Benthic/Pelagic Fish	Distribution	mean	stdev	median	
Pb	exponential	300		210	
Ро	exponential	240		170	
Ra	lognormal	80	120	44	
Th	lognormal	110	110	78	
U	lognormal	30	60	13	

Concentration ratios for Pisidium sp. as taken from ERICA database

Bivalve mollusc	Distribution	mean	stdev	median	
Pb	exponential	1700		1200	
Ро	lognormal	38000	49000	23000	
Ra	lognormal	1500	1600	1000	
Th	exponential	100		69	
U	exponential	180		130	

Concentration ratios for Chironomus sp. as taken from ERICA database

Insect Iarvae	Distribution	mean	stdev	median
Pb	exponential	10000		6900
Ро	exponential	9900		6900
Ra	exponential	1500		1000
Th	exponential	100		69
U	exponential	500		350

Results Summary

Calculated Radionuclide concentrations in fishes

[Bq/kg]	Pb-210	Po-210	Ra-226	Th-230	U-238
mean	3.9E+01	8.9E+00	2.7E+01	6.1E+00	8.7E+01
median	9.4E+00	1.7E+00	1.7E+00	1.1E+00	4.1E+00
minimum	1.5E-01	2.9E-02	2.3E-02	1.0E-02	5.4E-03
maximum	3.7E+02	5.6E+01	4.7E+02	6.5E+01	1.1E+03

Results Summary

Calculated Radionuclide concentrations in Pisidium sp.

[Bq/kg]	Pb-210	Po-210	Ra-226	Th-230	U-238
mean	2.0E+02	2.2E+03	7.6E+02	5.8E+00	6.2E+02
median	2.4E+01	3.8E+02	5.8E+01	6.9E-01	1.7E+01
minimum	8.0E-01	2.1E+01	9.5E-01	2.4E-03	2.1E-02
maximum	2.1E+03	1.3E+04	1.3E+04	6.4E+01	7.5E+03

Calculated radionuclide concentrations in Chironomus sp.

[Bq/kg]	Pb-210	Po-210	Ra-226	Th-230	U-238
mean	1.2E+03	3.7E+02	5.4E+02	5.8E+00	1.7E+03
median	3.1E+02	6.9E+01	3.5E+01	6.9E-01	4.7E+01
minimum	4.9E+00	1.2E+00	1.8E-01	2.4E-03	5.9E-02
maximum	1.2E+04	2.3E+03	9.6E+03	6.4E+01	2.1E+04

Results Summary

Calculated distribution coefficients of radionuclides

[L/kg]	Pb-210	Po-210	Ra-226	Th-230	U-238
mean	1.7E+05	3.4E+05	3.9E+04	3.0E+05	2.2E+04
median	4.4E+04	8.2E+04	2.5E+04	1.0E+05	7.5E+03
minimum	2.4E+03	5.0E+03	2.0E+03	2.5E+02	3.2E+01
maximum	9.6E+05	1.5E+06	2.2E+05	2.0E+06	1.2E+05

Thank you for your attention

Jan.Horyna@sujb.cz