U.S. EPA's Models for Establishing Cleanup Levels in Soil, Water, Buildings and Streets at Superfund Sites

> Stuart Walker U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation (OSRTI) Science and Policy Branch

Presented to the IAEA EMRAS II Workgroup "NORM & Legacy Sites" in Vienna, Austria on September 23, 2009

Purpose

- 1. Provide *brief* overview of EPA Superfund approach for selecting cleanup levels and use of risk/dose assessment
- 2. Provide overview on new and upcoming CERCLA risk assessment calculators, guidance, and training for Radionuclides

Part 1

EPA Superfund Approach for Selecting Cleanup Levels

EPA Addresses Site Cleanup Under Several Laws, Programs

Comprehensive Environmental Response, Compensation & Liability Act, CERCLA or "Superfund"

 National Contingency Plan (NCP) is regulation for CERCLA

 National Priorities List (NPL) guides EPA on which sites need further attention

What does a Superfund Site look like?

There are many different types of Superfund sites.

»See following 4 pages for examples of radioactively contaminated sites.

Nuclear Metals Inc. - Massachusetts

Abandoned Uranium Mines Project – Navajo Nation

Welsbach/General Gas Mantle - New Jersey

Hanford – D Reactor / DR Reactor Remediation

CERCLA Decision-making

 CERCLA cleanup decisions are made sitespecifically
 Must comply with CERCLA and NCP
 EPA Regional site managers
 Removals – On Scene Coordinators (OSCs)
 Remedial (and NTC-removals) – Remedial Project Managers (RPMs)

Nine CERCLA Remedy Selection Criteria

Two threshold criteria (both must be met)

- 1. Protect human health and the environment
- 2. Comply (attain or waive) with other federal and state laws: Applicable or Relevant and Appropriate Requirements (ARARs)

 Protect current or future sources of drinking water (e.g., attain MCLs or more stringent state standards)

Nine CERCLA Remedy Selection Criteria (continued)

♦ 6 CERCLA ARAR waivers

- 1. Interim Measure
- 2. Greater Risk to Health and the Environment
- 3. Technical Impracticability
- 4. Equivalent Standard of Performance
- 5. Inconsistent Application of State Requirements
- 6. Fund Balancing

Page-12

Nine CERCLA Remedy Selection Criteria (continued)

- Five balancing criteria (used to evaluate between potential remedies that meet threshold criteria)
 - 1. Long-term effectiveness and permanence
 - 2. Reduction of waste toxicity, mobility, or volume
 - 3. Short-term effectiveness
 - 4. Implementability
 - 5. Cost

Nine CERCLA Remedy Selection Criteria (continued)

 Two modifying criteria (information from public comment period that may modify remedial action)

State Acceptance

- 1. State acceptance
- 2. Community acceptance

Community Acceptance

CERCLA Cleanup Levels

♦ ARARs often determine cleanup levels

 Where ARARs are not available or protective, EPA sets site-specific cleanup levels that

» For carcinogens, represent an increased cancer risk of 1 x 10⁻⁶ to 1 x 10⁻⁴

—10⁻⁶ used as "point of departure"

—PRGs are established at 1×10^{-6}

- » For non-carcinogens, will not result in adverse effects to human health (hazard index (HI) <1)</p>
- Address ecological concerns

 To-be-considered (TBC) material may help determine cleanup level

CERCLA Cleanup Levels Are <u>NOT</u> Based On

- NRC decommissioning requirements (e.g., 25, 100 mrem/yr dose limits) 10 CFR 20 Subpart E
 - » If used as an ARAR, 10⁻⁶ still used as point of departure, and 10⁻⁴ to 10⁻⁶ risk range must be met
- Guidance outside risk range and/or if expressed as a dose (# mrem/year). This includes:
 - » DOE orders, NRC guidance (e.g., NUREGs), ICRP guidance, IAEA guidance, NCRP guidance, ANSI/HPS guidance, EPA/DHS PAGs, and Federal guidance

Risk-based Cleanup Levels for Radioactive Contamination

 Radiation cleanup levels expressed as risk levels, <u>not</u> mrem [mSv]

Superfund uses "slope factors" in Health Effects Assessment Summary Tables (HEAST) instead of dose conversation tables to estimate cancer risk from radioactive contaminants

» HEAST has been updated with new information from Federal Guidance 13

—Based on information in ICRP 72

EPA/ITRC CERCLA Policy and Guidance Training

- ♦ Four modules provide:
 - 1. Radiation Regulatory Background and Case Studies
 - 2. Overview of CERCLA Requirements
 - 3. EPA CERCLA Radiation Guidance and Tools
 - 4. Challenges of Long-Term Management of Radiation Sites

EPA/ITRC CERCLA Policy and Guidance Training, cont.

- Five Live Internet rad CERCLA Policy Training sessions have been conducted
 - » 838 total participants, including 163 EPA employees
- An archived version of a live training session is available at:
 - » http://www.clu-in.org/conf/itrc/radscleanup_060507/
- Archived version was accessed by users 3,282 times between January 1, 2008 and August 26, 2009.

Page-19

Radiation Human Health Assessment Approaches

RISK APPROACH

» Where <u>risk</u> is calculated directly by assigning a unit of risk for every unit of exposure (Cancer Slope Factor) and multiplying by the total exposure.

DOSE APPROACH

- » Where <u>dose</u> is calculated by multiplying a dose conversion factor by the total intake/exposure.
- » The calculated dose can also be multiplied by a probability coefficient to arrive at a risk value.

Radiation Human Health Assessment Approaches

Risk = Exposure X Cancer Slope Factor

Dose = Exposure X Dose Conversion Factor (DCF)

Page-21

Inhalation Pathway Example:

◆<u>RISK</u> =

(Inhalation Slope Factor) X (radionuclide concentration in air) X (breathing rate) X (exposure duration)

◆<u>DOSE</u>=

(DCF) X (radionuclide concentration in air) X (breathing rate) X (exposure duration)

Basis for Risk and Dose Approaches

RISK	DOSE
 Lifetime exposure to an	 Annual exposure to an <u>average</u>
individual with a <u>reasonable</u>	<u>member of the "critical group"</u>
<u>maximum exposure</u> (EPA)	(NRC)
Risk is a unitless measurement of the likelihood of an adverse affect	 Dose equivalent is measured in units of rem, mrem, or sievert
 Standards expressed in terms of	 Standards expressed in terms of
risk (e.g., EPA's 10 ⁻⁴ -10 ⁻⁶ CERCLA	dose equivalent (e.g., NRC's 25
risk range)	mrem/year)
 Slope factors based primarily on	 DCFs based on populations from
US population	other nations

Basis for Risk and Dose Approaches, cont.

RISK	DOSE
Age- and sex-dependent risk models in Slope Factors	Age-dependent (separate DCFs, for infants, children, and adults)
Slope Factor does not consider genetic risk	DCFs consider genetic risk
Considers causes of death other than radiation-induced cancer	Does not consider other competing causes of death
Low-LET & high-LET estimates considered separately for each target organ	 Dose equivalent includes both low-LET and high-LET radiation multiplied by appropriate Relative Biological Effectiveness (RBE) factors

Basis for Risk and Dose Approaches (cont.)

RISK	DOSE
•RBE for most sites = 20; RBE for breast =10; for leukemia =1	•RBE for alpha radiation = 20 for all sites
 Estimates of absorbed dose to 16 target organs/tissues 	 Effective dose considers dose estimates to 12+ target organs (+ average of 10 other organs)
Lung dose based on absorbed dose to tracheobronchial and pulmonary regions	Lung dose based on average dose to tracheobronchial, nasopharyngeal and pulmonary regions
 Variable length to integration period (< 110 years) 	Fixed length of 50 years for integration period

Radiation Human Health Assessment Approaches

Dose values may be converted into risk and vice versa using conversion factors

Dose and Risk are closely related

» [Risk = (total dose) X (probability coefficient in risk/unit dose)]

Risks converted from dose may vary as much as 10 times from risks based on slope factors for some types of exposure

Part 2

New and Upcoming Superfund Radiation Risk Calculators and Training

Guidance: Risk Assessment Q&A

- Radiation Risk Assessment at CERCLA Sites: Q&A (12/99) OSWER Directive 9200.4-31P
- Provides overview of current EPA guidance for radiation risk assessment
- Written for users familiar with Superfund but not radiation
- ♦ Adds some new guidance
 - » Dose assessment only for ARAR compliance
 - » No dose-based TBCs (including No 15 mrem/yr [0.15 mSv/yr] for selecting cleanup levels)
 - » Direct exposure rate may supplement sampling

Guidance: Rad SSG

- Soil Screening Guidance for Radionuclides [rad SSG] documents (10/00) OSWER Directives 9355.4-16A and 9355.4-16
 - » User Guide
 - » Technical Background Document
- Guidance to screen out areas, pathways, and/or radionuclides early in the process
- Consistent with 1996 chemical SSG
 - » 1 x 10⁻⁶ and MCLs (leaching from soil)
 - » Residential land use
 - » Survey procedures for site characterization
 - » Evaluates 5 soil to groundwater models
 - » Accounts for technical differences of radiation

CERCLA Risk and Dose Calculators (final and *draft*)

Human Health

<u>Cancer risk (1 x 10-6)</u> ♦ PRG (soil and water) ♦ BPRG (inside buildings)

Dose (millirem per year) ◆ DCC (soil and water) BDCC (inside buildings) ◆ SPRG (outside surfaces) ◆ SDCC (outside surfaces)

Ecological

 \diamond REB (aquatic, riparian, terresterial, plants and animals)

Default Parameters

- All CERCLA risk and dose assessment calculators for radionuclides allow default runs
 - » Default parameters already established
 - » Just select a scenario and radionuclides and click on retrieve

PRG PRG What's Home Search New	s Frequently Asked Questions	User's Guide	Equations	Download Area
Preliminary Reme Radionuclides	diation Goals for	г	opic for Key OSV Guidances an	VER Radiation d Reports
Select Scenario	 Resident Indoor Worker Outdoor Worker Tap Water Fish Soil To Ground Water Agriculture 			
Select PRG type	 Agriculture Defaults Site Specific 			
Select Individual Cher	micals Cs-134 Cs-134m Cs-134m+D Cs-135 Cs-135m Cs-136 Cs-137 Cs-137+D Cs-138			
Select Units	\square ALL \bigcirc PCi \bigcirc Ba			
Select output option	BqBrowserFile			
	Retrieve			

Site-Specific Paramters

- All CERCLA risk and dose assessment calculators for radionuclides allow site-specific runs
 - » Change default parameters with defensible site-specific or regional information
 - » Still select a scenario and radionuclides, but then see each parameter

12. The curie (Ci), the customary unit of activity, is equal to 3.7 x 10¹⁰ nuclear transformations per second. 1 picocurie (pCi) = 10⁻¹² Ci. The International System (SI) unit of activity is the becquerel (1 Bq =1 nuclear transformation per second).

Retrieve clear selection

Page-34

EPA CERCLA Policy on Changing Defaults

- Site managers should weigh the cost of collecting data with the potential for deriving significantly different concentrations (either PRG or DCC)
 - » Defaults are generally conservative
 - » Using site-specific data will usually result in higher allowable concentrations for same risk or dose estimate

How NOT to Change Defaults

 In general, should not replace default parameters with literature values

- »Including defaults from other Agencies or other EPA programs
- »Should be same values for parameters used with chemicals for the same receptor at the same site

Guidance: Rad PRG Calculator

Calculator to establish PRGs, when:

- » ARAR is either not available or sufficiently protective (e.g., 25 mrem/yr [0.25 mSv/yr] or more)
- Electronic equations (risk and leaching to groundwater) also are on Internet
 - » 1x10⁻⁶ and MCLs (leaching from soil)
 - » Accounts for technical differences of radiation (e.g., gamma, plant uptake)

Guidance: Rad PRG Calculator (continued)

Seven scenarios/land uses available

- 2. Agricultural 6. Tap water
- 4. Outdoor workers

- 1. Residential 5. Fish ingestion
- 3. Indoor workers 7. Soil to groundwater

Chemical SSL Internet equations should be used for chemical toxicity of uranium

Guidance: ARAR Dose Calculator

Calculator to establish Dose Compliance Concentrations (DCC) for single dose limit ARARs requiring a dose assessment

◆ Six scenarios/land uses available

- 3. Indoor workers 6. Tap water
- 1. Residential 4. Outdoor workers
- 2. Agricultural 5. Fish ingestion

Equations similar to those used for PRG calculator, except dose conversion factors used instead of slope factors

EPA/ITRC Radiation Risk Training

♦ Four modules provide:

- 1. Background and Regulatory Case Studies
- 2. Existing Practices in Radiation Risk Assessment
- 3. Use of Radiation PRG Calculator (tutorial on using PRG and ARAR dose calculator)
- 4. Case Study Application for PRG Calculator

EPA/ITRC Radiation Risk Training, cont.

- Eight Live Internet rad CERCLA Policy Training sessions have been conducted
 - » 1,047 total participants, including 165 EPA employees
- An archived version of a live training session is available at:
 - » http://www.clu-in.org/conf/itrc/rads_051507/
- Archived version was accessed by users 1,710 times between January 1, 2008 and August 26, 2009.

Page-41

Guidance: Building PRG (BPRG) Calculator

- Calculator to establish 1x10⁻⁶ risk based PRGs for the reuse of radioactively contaminated buildings.
- Equations and parameters are derived from latest EPA chemical methodology (e.g., assessment at WTC)
 - » Adjusted to account for technical differences posed by radiation

Guidance: Building PRG (BPRG) **Calculator** (continued)

◆BPRG calculator includes 2 land use scenarios » Residential »Indoor worker Submersion Inhalation Both land uses include 3 exposure routes »Settled dust »Ambient air » Direct external exposure —5 Room sizes and 4 receptor locations, both -Surface -Volumetric

Building Dose Cleanup Concentrations (BDCC) ARAR Dose Calculator *DRAFT*

- BDCC Purpose: to establish BCCs for Inside Buildings for single dose limit ARARs (# mrem/yr)
- BDCC includes 2 land use scenarios (Residential, Indoor Worker)
- 2 land uses include 3 exposure routes (Settled dust, Fixed Direct External 3-D, Ambient Air)
- Equations similar to those used for BPRG calculator, except dose conversion factors used instead of slope factors

Surfaces PRG (SPRG) Calculator

 Establish 1 x 10⁻⁶ risk based PRGs for radioactively contaminated outside hard surfaces (e.g., slabs, pavement, sidewalks, sides of buildings)

Derived from rad PRG and BPRG calculators

Page-45

SPRG Exposure Scenarios

♦ SPRG includes 3 land use scenarios

- » Residential
- » Indoor Worker
- » Outdoor Worker

♦ 3 land uses include 3 exposure routes

- » Settled dust (pave and unpaved street level)
- » Fixed Direct External 3-D (street level)
 - —Surface and Volumetric
- » Fixed Direct External 2-D (slabs)
 - —Surface and Volumetric

Surface Dose Cleanup Concentrations (SDCC) ARAR Dose Calculator *DRAFT*

- <u>SDCC Purpose</u>: to establish DCCs for Outside Hard Surfaces for single dose limit ARARs (# mrem/yr)
- SDCC includes 3 land use scenarios (Residential, Indoor Worker, Outdoor Worker)
- A land uses include 3 exposure routes (Settled dust, Fixed Direct External 3-D, Fixed Direct External 2-D (slabs))
 A land uses include 3 exposure routes (Settled dust, Fixed Direct External 3-D, Fixed Direct
- Equations similar to those used for SPRG calculator, except dose conversion factors used instead of slope factors
 EPA

EPA/ITRC Radiation D&D Training

Four modules provide:

- 1. Introduction and Regulatory Basis for D&D
- 2. Factors for Implementing D&D
- 3. Preliminary Remediation Goal (PRG) Calculators (tutorial on using BPRG, SPRG, BDCC, and SDCC calculators)
- 4. Case Studies and Lessons Learned

Radiation D&D Training, cont.

 Five Live Internet rad CERCLA Policy Training sessions have been conducted

- » 731 total participants, including 101 EPA employees
- An archived version of a live training session is available at:
 - » http://www.clu-in.org/conf/itrc/radsdd_040308/
- Archived version was accessed by users 2,046 times between January 1, 2008 and August 26, 2009.

Radionuclide Ecological Benchmark (REB) Calculator *DRAFT*

- Establish risk-based Biota Concentration guides (BCGs), or ecological benchmarks, for radioactively contaminated sites
- Derived from DOE Graded Approach guidance
 - » Includes same dose levels for tissue death
 - » Strong recommendation to look at chemical eco effects

REB Exposure Scenarios

Includes 12 animal or plant benchmark scenarios
 »6 generic composite only
 »6 species-specific/site-specific

Video: Radiation Risk Assessment

 Superfund Radiation Risk Assessment and How you can Help, an Overview (3/05) OSWER Directive 9200.4-37

Video for the general public. It contains information on:

» The Superfund risk assessment process when addressing radioactive contamination

» How the public is involved site-specifically

For More Copies or Information

Guidance documents are on Superfund Radiation Webpage:
 » http://www.epa.gov/superfund/health/contaminants/radiation/index.htm

- Guidance documents for Superfund Radiation Risk Assessment
 - » http://www.epa.gov/superfund/health/contaminants/radiation/radrisk.htm

For further information or questions, Stuart Walker
 » Phone: (703) 603-8748
 » Fax: (703) 603-9133
 » Email: Walker.Stuart@epa.gov

