Federal Medical Biological Agency of Russia

Problems of nuclear legacy regulation in Russia

Nataliya Shandala

Federal Medical Biophysical Centre, Moscow

Content

- Nuclear Legacy: classification, examples, consequences
- Nuclear Legacy Regulation: problems and trends
- 3. International Cooperation
- 4. Conclusions and Recommendations

Federal Laws of Russia

- radiation protection of the public, 1996
- Sanitaryepidemiological prosperity of the public, 1999
- Preservation of the environment,2001

Facilities under FMBA

Part 1

Nuclear Legacy: classification, examples, consequences

- Nuclear Weapons Production and Tests
- Radiological Accidents
- Spent Nuclear Fuel (SNF) and Radioactive Waste (RW) at Sites of Temporary Storage (STS)
- Uranium TENORM

Classification

■ Man-Made Radiation

- Uranium Tailing Dumps
- Places of Legacy Radionuclide Management
 Operations
- Early Nuclear Materials Production
- Nuclear Weapons Landfills
- Radiation Accident Areas

Places of Global Nuclear Tests

(UNSCEAR-2000)

Nuclear Landfills Lop Nor (China) & Semipalatinsk (USSR)

Villages along Techa River & Mayak area

¹³⁷Cs spots in Belarus, Russia and Ukraine following the Chernobyl NPP accident

Source	Time period	Significant Nuclides	Mean dose (mGy, mSv)
Global fallout	1950-2020	¹³⁷ Cs, ⁹⁰ Sr, ¹³¹ I, ¹⁴ C, ³ H	1.1
Techa River, Russia	1949 - 2020	⁹⁰ Sr, ⁸⁹ Sr, ¹³⁷ Cs, др.	50-2000
Marshall Islands	1954	¹³¹ , ¹³² , ¹³³	Effective – up to 2000 Thyroid – up 200·10 ³
Chernobyl, USSR	1986-2056	¹³¹ I, ¹³⁴ Cs, ¹³⁷ Cs, ⁹⁰ Sr	Effective – up to 500 Thyroid – up to 10.10 ³

Source	Number of persons exposed	Observed health effect	
Global fallout	Few billions	None observable against a very large background of cancer incidence	
Techa River, Russia	28 thousands	100 - 1000 cases of chronic radiation sickness. Leukemia and solid cancer under study	
Marshall Islands	Few hundred	Tens of benign thyroid nodules, few thyroid cancers	
Chernobyl, USSR	Few millions	2000 thyroid cancers in children by 2000, more are expected	

Andreeva Bay

 $1.3 \cdot 10^{17}$ Bq of SNF

6.0 • 10¹⁴ Bq of RW

Gremikha

1.3 • 10¹⁶ Bq of SNF

3.3 • 10¹³ Bq of RW

NORM & TENORM

Rn equivalent equilibrium activity concentration in dwellings, Octyabrsky

Gamma dose rate up to 15 μ Sv/hour

Research in uranium mine

Part 2

Nuclear Legacy Regulation: problems and trends

- Existing Regulation
- Regulatory Trends
- Federal Laws

Russian Regulative Basis

Up-to-date Protection Ground

- ICRP: Recommendations on Radiological Protection (Publication 103), 2007
- IAIE: Basic Safety Standards, 1996, under revision now
- Russia: NRB, 1999, to be reviewed

National radiation protection standards of many states, including Russia, are based on the ICRP and IAEA documents

ICRP: Existing Exposure Situation

- Exposure already exists, when decision is to be made on radiation protection
- Prolonged exposure due to
 - excess radiation background
 - after radiation accidents
 - following previous radiation substance handling (including nuclear weapon manufacturing and tests, etc.)
- In many respects, consequences of the Chernobyl accident resulted in generation of such independent exposure situation

Regulatory Trends

Practices and Intervention in ICRP 60, 82

criterion of nonintervention 10 mSv

reference level from 1
 to 20 mSv

Legal Basis for Rulemaking

- Special Environmental Remediation
 Programs of the Territory under Radioactive
 Contamination, 2001
- Transfer of Lands from One Category to Another, **2004**
- Use of Lands under Radioactive or Chemical Contamination, Establishment of Security Areas, 2004

Radionuclides	Bq / kg		
Pb-210	2.0-1		
Po-210	1.2-1		
Ra-226	5.0-1		
Th-232	6.0-1		
U-234,5,6,8	2.9 - 3.1		

Mineral water : U 1,8 mg/l (44,4 Bq/l)

Ra-226 - 18,5 Bq/l

Effective dose NORM - <100 μSv/y</p>

Part 3

International Cooperation

- Supervision
- Monitoring
- Control
- Emergency Preparedness

- Safety culture
- Exchange of experience

Regulatory Documents for SevRAO Facilities

- Requirements to provide radiological protection of the personnel and the public
- Criteria and norms on remediation of sites and facilities contaminated with man-made radionuclides
- Arrangement of the environmental radiation monitoring in the operational area of the STSs
- Requirements for industrial waste management
- The Operational Radiological and Medical Criteria for the Initiation of Emergency Protective Actions

Norms of remediation

Variant of remediation	Category of persons	Dose constraint, mSv⋅y⁻¹			
		Due to residual contamination	Due to new operation involved radiation sources	Total	Dose limit from (NRB-99)
Conservation	Workers	2	-	2	20
	Public (SA territory)	0,1	-	0,1	1
Conversion ("brown lawn")	Personnel group A	3	7	10	20
	Personnel group B	1	1	2	5
	Public (SA territory)	0,1	0,15	0,25	1
Liquidation ("green field")	Public (former STS territory)	1	-	1	Lack of
	Public (the rest territory)	0,1	-	0,1	NRB-99

(2006) taking into account the up-to-date ICRP approaches

Russian-Norwegian Agreement

Uranium Legacy

 Territorial Reclamation of the Eurases members under exposure of uranium mining and milling facilities

Countries	S, km²
Kazakhstan	51,7
Kyrgyzstan	6,5
Tajikistan	3,0
Uzbekistan	2,8

Part 4

Conclusions & Recommendations

Regulatory, scientific and organizational outlooks

Conclusions

- Past defense activity, accidents, poor storage of RW to excess contamination of some Russian areas
- Radiation effects in the environmental media have been found in limited areas - after the Chernobyl and Mayak
- 3. ICRP and IAEA developed the RP system in the existing exposure situation
- 4. To introduce a chapter on RP of the public in the existing exposure situation into the national standards

- To focus the IAEA attention on the necessity of the document devoted to the public health and environmental protection
- To promote development of the international connections on studying of experience in the environmental remediation regulation