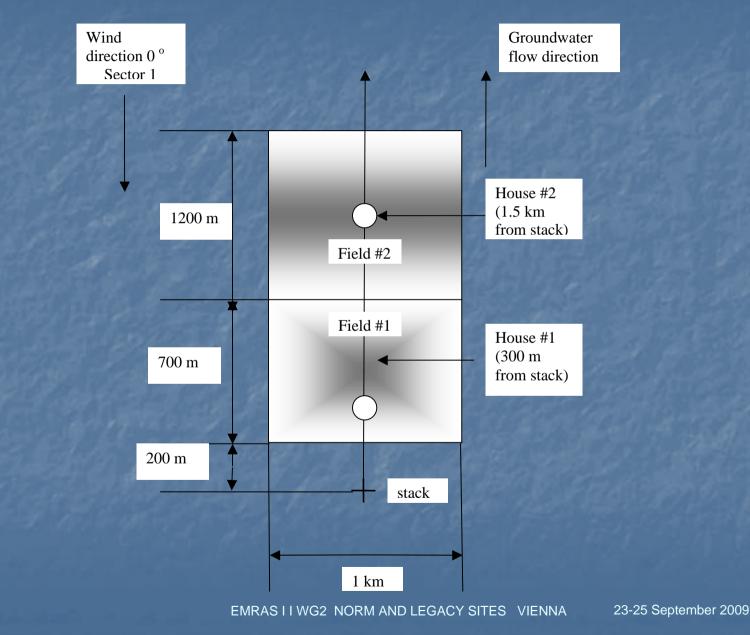
# Modelling NORM in the environment

### EMRAS Project, NORM Working Group

R.S. O'Brien – Australia;
P. McDonald – UK;
P.W. Waggitt – IAEA;
V. Koukouliou – Greece;
D. Pérez Sánchez – Spain;
J. Horyna - Czech Republic;
C. Nuccetelli, M. Paganini – Italy;
T. al-Khayat – Iraq
C. Yu, L. Setlow – USA;
E. Quintana, A. Canoba, V. Amado – Argentina;
T. Zeevaert\*, G. Olyslaegers – Belgium;

## Hypothetical point source scenario


### Point source

- Single stack
- 2 receptors (houses) at 300 and 1500 m
- Wind rose data
- Atmospheric stability data
- Rainfall, occupancy and dietary data
- Discharge data (Pb-210, Po-210)

### Predict

- Air concentrations
- Deposition & resuspension
- Surface concentrations
- Soil concentrations
- Doses (external, food chain, inhalation)

### Point source scenario



## Annual wind rose data

| Sector | Wind Direction | Frequency |
|--------|----------------|-----------|
|        |                | (%)       |
| 1      | 345° - < 15°   | 4.6       |
| 2      | 15° - < 45°    | 5.4       |
| 3      | 45° - < 75°    | 7.6       |
| 4      | 75° - < 105°   | 5.4       |
| 5      | 105° - < 135°  | 3.8       |
| 6      | 135° - < 165°  | 7.4       |
| 7      | 165° - < 195°  | 14.1      |
| 8      | 195° - < 225°  | 20.3      |
| 9      | 225° - < 255°  | 13.3      |
| 10     | 255° - < 285°  | 7.5       |
| 11     | 285° - < 315°  | 6         |
| 12     | 315° - < 345°  | 4.1       |

EMRAS I I WG2 NORM AND LEGACY SITES VIENNA 23-25 September 2009

# Annual atmospheric stability and wind speed data

| Pasquill stability | Frequency | Mean Wind            |
|--------------------|-----------|----------------------|
| category           |           | Speed                |
|                    | (%)       | (m s <sup>-1</sup> ) |
| Α                  | 0.5       | 1                    |
| В                  | 0.5       | 1.5                  |
| С                  | 4         | 2.5                  |
| D                  | 28        | 5                    |
| Е                  | 38        | 8                    |
| F                  | 27        | 6                    |
| G                  | 2         | 4                    |

# Stack discharge data for the point source scenario

| Effective stack height           | 100 | m                  |
|----------------------------------|-----|--------------------|
| Air discharge rate               | 100 | $m^{3} s^{-1}$     |
|                                  |     |                    |
| <sup>210</sup> Pb discharge rate | 100 | Bq s <sup>-1</sup> |
| <sup>210</sup> Po discharge rate | 100 | Bq s <sup>-1</sup> |

## Dietary data

| drinking   |            |                 |     | L a <sup>-1</sup>     |
|------------|------------|-----------------|-----|-----------------------|
| water      | well       |                 | 400 |                       |
|            |            |                 |     |                       |
|            |            |                 | 1   | $L m^{-2} d^{-1}$ for |
| irrigation | river      |                 |     | 100 days              |
| cattle     | river      |                 | 60  | L d <sup>-1</sup>     |
| sheep      | river      |                 | 6   | L d <sup>-1</sup>     |
|            |            |                 |     |                       |
| diet       | fish       |                 | 5   | kg a <sup>-1</sup>    |
| 2          |            | + grain         | 80  | kg a <sup>-1</sup>    |
|            | grains     | products        |     |                       |
| 1          | fruits     | + juices        | 80  | kg a <sup>-1</sup>    |
|            | vegetables |                 | 70  | kg a <sup>-1</sup>    |
|            | meat       | + sausages      | 40  | kg a <sup>-1</sup>    |
| 2          |            | + milk products | 90  | kg a <sup>-1</sup>    |
| 2          | milk       |                 |     |                       |
|            |            | without tubers  | 70  | kg a <sup>-1</sup>    |
|            | root crops |                 |     |                       |
|            | tubers     |                 | 90  | kg a <sup>-1</sup>    |

## Occupancy data

| indoors – sleeping        | 8 | h |
|---------------------------|---|---|
| indoors - light exercise  | 8 | h |
| outdoors - light exercise | 4 | h |
| outdoors - heavy exercise | 4 | h |

PC CREAM – (Consequences of Releases to the Environment: Assessment Methodology) is a suite of models and data for assessing the radiological consequences of the discharge of routine radioactive releases of aerial and liquid effluents to members of the population of concern

Methodology used with PC-CREAM

The processes modeled in PC-CREAM that influence the transfer of radionuclides in the receiving terrestrial environment are:

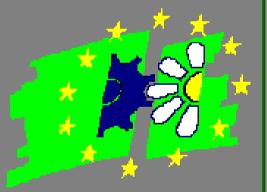
- Deposition from the atmosphere
- Migration of radionuclides in soil
- Transfer to plants
- Transfer to animals

- ASSESSOR, the assessment program, has the central dose assessment function within the programs.
- FARMLAND is a dynamic compartment model for evaluating the transfer of radionuclides through food chains following routine continuous releases to the atmosphere.
- PLUME is a Gaussian plume atmospheric dispersion model for calculating average radioactivity concentrations in air.
- DORIS is a marine dispersion model for European waters capable of calculating radioactivity concentrations in seawater, and marine sediments.
- GRANIS is a model for calculating external gamma exposure to an individual from deposited radioactivity in soil.
- RESUS is a time dependent resuspension model for calculating annual average activity concentrations in air due to the resuspension of previously deposited activity.

To calculate the aerial dispersion factors, the PLUME program was used to generate the dispersion data libraries for <sup>210</sup>Po and <sup>210</sup>Pb, using the meteorological data provided.

Next, a library of concentrations of <sup>210</sup>Po and <sup>210</sup>Pb in foodstuffs was created using the FARMLAND module. For this assessment, the undisturbed soil model was selected. Food consumption rates were those provided in the HPS scenario description.

The RESUS module was run to calculate a library of time integrated resuspended activity concentrations in air of <sup>210</sup>Po and <sup>210</sup>Pb for the model's default integration times.


Finally, using the habit data and discharge data provided, and using the output library files created from the various modules within PC-CREAM, food concentrations and the individual committed effective doses to the residents were calculated using ASSESSOR.

#### PC-CREAM 98

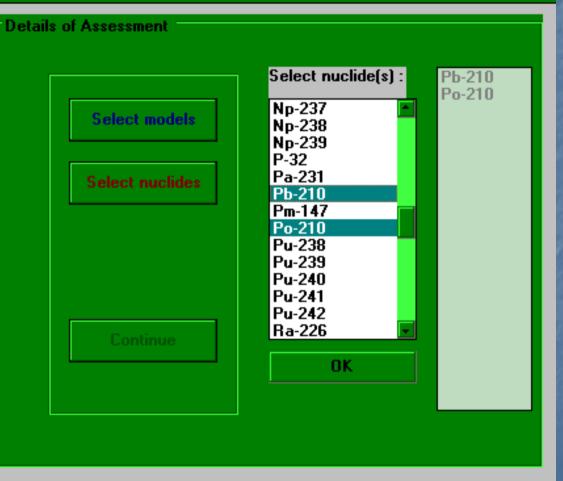
Consequences of Releases to the Environment Assessment Methodology



National Radiological Protection Board



European Commission Directorate-General Environment, Nuclear Safety and Civil Protection (DGXI)


#### FARMLAND 98 [Untitled]

File Output Help

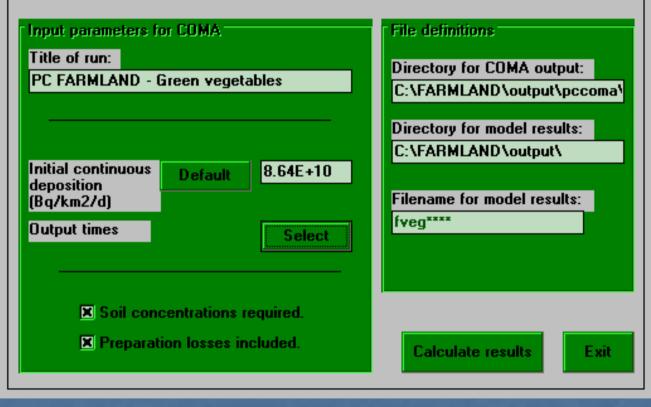
|                 | Select models :                              |  |
|-----------------|----------------------------------------------|--|
| Select models   | Cows on pasture<br>Sheep on pasture<br>Grain |  |
| Select nuclides | Green vegetables<br>Root vegetables<br>Fruit |  |
|                 |                                              |  |
|                 |                                              |  |
| Continue        |                                              |  |
| Continue        | ОК                                           |  |
|                 |                                              |  |

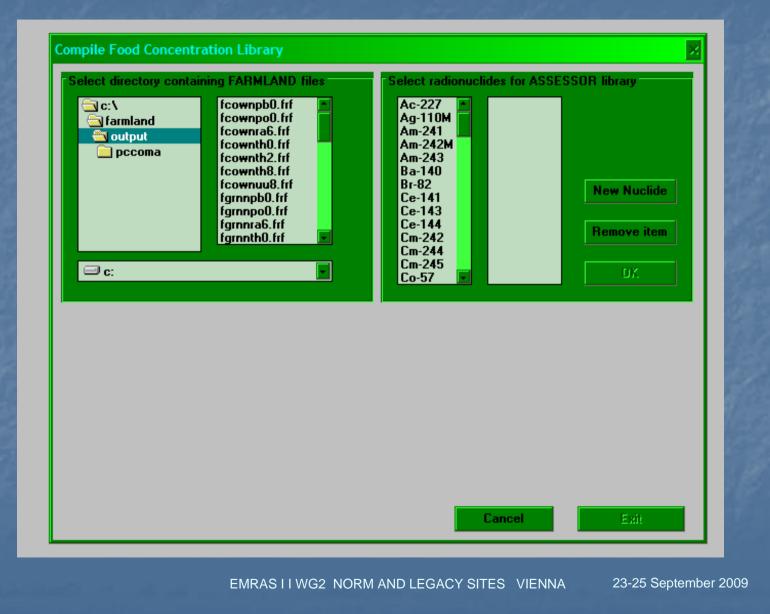
#### FARMLAND 98 [Untitled]

File Output Help



EMRASIIWG2 NORM AND LEGACY SITES VIENNA


|                           | View rate constants |
|---------------------------|---------------------|
| Grain<br>Green vegetables |                     |
| Root vegetables           | Change parameters   |
|                           | Show model          |
|                           | Calculate results   |
|                           | Exit                |


| Modelling data<br>Choose a selected food: |                                                |
|-------------------------------------------|------------------------------------------------|
| Green vegetables                          | View rate constants                            |
|                                           | Change parameters Show model Calculate results |
|                                           | Exit                                           |

23-25 September 2009

#### Input For Running COMA

### Green vegetables



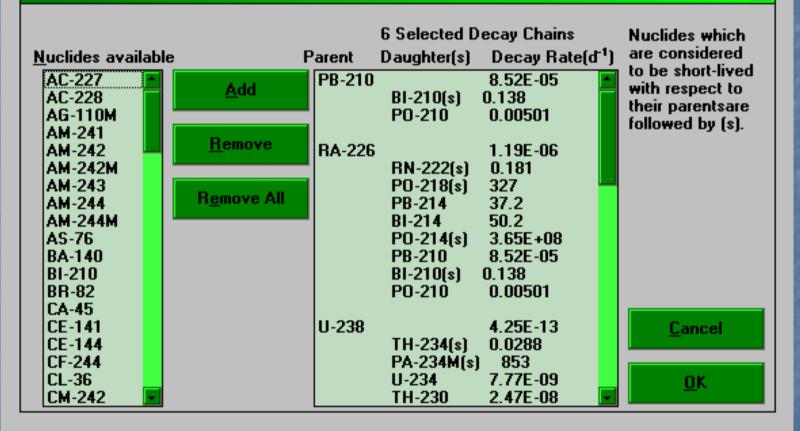


Run Options

Soil migration and external dose

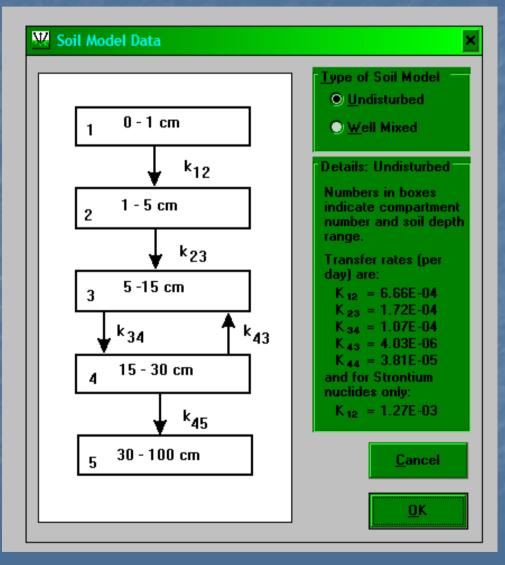
<u>External dose only</u>

Soil migration details External dose details


<u>M</u>uclides Source and <u>T</u>imes

Soil Model Data

Material Comp


EMRAS I I WG2 NORM AND LEGACY SITES VIENNA 23-25 September 2009

#### 🗅 Nuclide Data

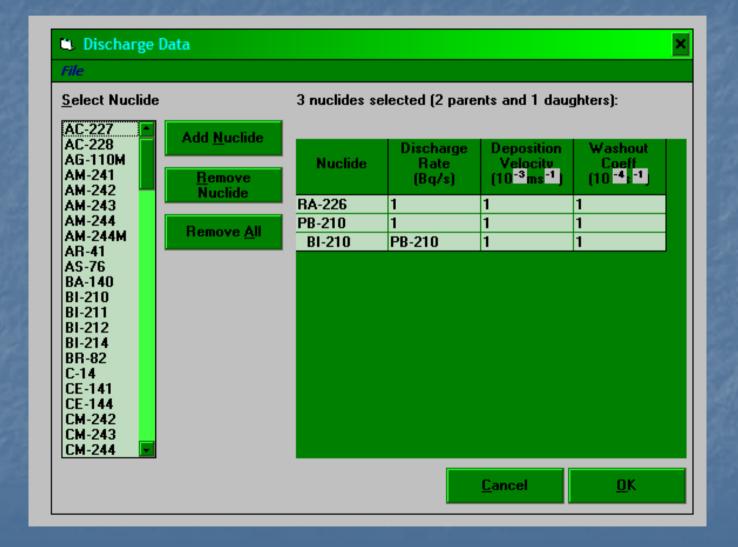


EMRAS I I WG2 NORM AND LEGACY SITES VIENNA 23-25 September 2009

×



EMRAS I I WG2 NORM AND LEGACY SITES VIENNA

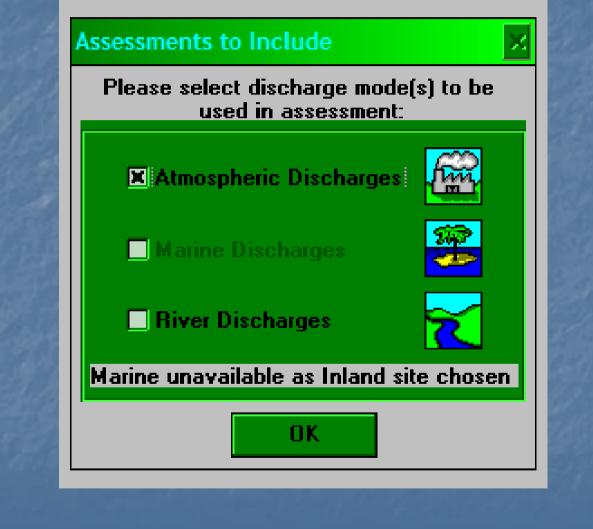

|                                                                                                                                                                                        | Number of                                                                                        | <u>M</u> aterials:   | 3                                                                       |                                                   |                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|
| Material <u>1</u>                                                                                                                                                                      | Material <u>2</u>                                                                                | Material <u>3</u>    |                                                                         |                                                   |                                                                 |
| <u>N</u> ame: Generi<br>Enter <u>D</u> ensity                                                                                                                                          |                                                                                                  |                      | 6 elements select                                                       | ed                                                |                                                                 |
| Elements av<br>7 NITROGE<br>9 FLUORIN<br>11 SODIUM<br>12 MAGNES<br>15 PHOSPH<br>16 SULPHU<br>18 ARGON<br>19 POTASSI<br>20 CALCIUM<br>22 TITANIU<br>25 MANGAN<br>56 BARIUM<br>58 CERIUM | N A                                                                                              | <u>A</u> dd<br>emove | Element<br>OXYGEN<br>SILICON<br>CARBON<br>HYDROGEN<br>ALUMINIUM<br>IRON | Atomic<br>Number<br>8<br>14<br>6<br>1<br>13<br>26 | Mass<br>Fraction<br>0.6<br>0.25<br>0.07<br>0.04<br>0.03<br>0.01 |
| Material Alloc                                                                                                                                                                         | ation                                                                                            |                      | Sum of fractions:                                                       |                                                   | <u> </u>                                                        |
| Layer 1:<br>Layer 2:<br>Layer 3:<br>Layer 4:<br>Layer 5:                                                                                                                               | Generic dry soil<br>Generic dry soil<br>Generic dry soil<br>Generic dry soil<br>Generic dry soil |                      | <u>V</u> iew Model                                                      |                                                   | <u>C</u> ancel<br><u>O</u> K                                    |

### PC-CREAM 98 PLUME

| Conter Information                                        | ×                                                                           |
|-----------------------------------------------------------|-----------------------------------------------------------------------------|
| Site <u>D</u> etails<br>Site Name: megalopolis            | <u>E</u> ffective Release Height (in m): 100                                |
| Distance Data <u>Number of Distances:</u> 2 Distance (km) | ₩ind Data<br>● Uniform<br>● Site Specific <u>M</u> et. Data<br>File: UN150D |
| 1 2.5<br>2 4                                              | Floughness Length<br>● 0.01m<br>● 0.04m                                     |
|                                                           | <ul> <li>0.10m</li> <li>0.30m</li> <li>0.40m</li> <li>1.00m</li> </ul>      |
| ⊂S <u>t</u> ability Category Classification Sch           | • 4.00m                                                                     |
|                                                           | 2 NORM AND LEGACY SITES VIENNA                                              |


G2 NORM AND LEGACY SITES VIENNA

### PC-CREAM 98 PLUME




EMRAS I I WG2 NORM AND LEGACY SITES VIENNA

### PC-CREAM 98 RESUS



EMRAS I I WG2 NORM AND LEGACY SITES VIENNA



Assessment Details



Discharge Point Data Collective - Population Integration Times Discharge Data Exposure Pathways

Lipotaro i damajo

Meteorological Data

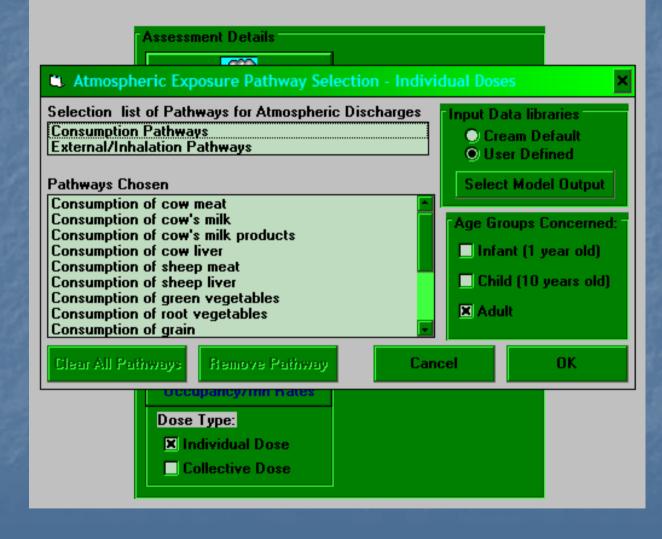
Ingestion Hates

Occupancy/Inh Rates

Dose Type:

Individual Dose

Collective Dose


EMRAS I I WG2 NORM AND LEGACY SITES VIENNA

|                                             | eric Discharge Poin            | t Data          |                  |                       |                            |
|---------------------------------------------|--------------------------------|-----------------|------------------|-----------------------|----------------------------|
| Edit                                        |                                |                 |                  |                       |                            |
| Individual Da                               | ita                            |                 |                  |                       |                            |
| Discharge<br>Point                          | Name of Point                  | Distance<br>(m) | Bearing<br>(deg) | Release<br>Height (m) | Dispersion file<br>(PLUME) |
| 1                                           | Stack 1                        | 0               | 0                | PLUME100              | 🔲 Cream default            |
|                                             |                                |                 |                  |                       |                            |
|                                             |                                |                 |                  |                       |                            |
|                                             |                                |                 |                  |                       |                            |
|                                             |                                |                 | Г                | Add Point             |                            |
|                                             |                                |                 |                  |                       |                            |
|                                             |                                |                 |                  | Add Point             | Remove point               |
| Collective Do                               | ise                            |                 |                  | Add Point             | riemove pomi               |
| Collective Do<br>Representat<br>Release Hei | ive                            | 🗾 🗖 Cream o     | default          | Cancel                | OK                         |
| Representat                                 | ive                            | al Dose         | default          |                       | J                          |
| Representat                                 | ive<br>ght (m):<br>X Individua | al Dose         | lefault          |                       | J                          |

EMRAS I I WG2 NORM AND LEGACY SITES VIENNA 23-25 September 2009

|         | Dose Type                   |        |                |   |                           |
|---------|-----------------------------|--------|----------------|---|---------------------------|
| ile:    |                             |        |                |   |                           |
|         |                             |        |                | _ | <u>A</u> dd Nuclide       |
|         | Dose - Stack 1 <sup>-</sup> |        |                |   |                           |
| Nuclide | Discharge<br>Rate (Bq/y)    | f1     | Absor.<br>Type |   | <u>R</u> emove<br>Nuclide |
| РЬ-210  | 1.00E+00                    | 0.2    | м              |   |                           |
| Ra-226  | 1.00E+00                    | 0.2    | М              |   | <u>C</u> lear Table       |
|         |                             |        |                |   |                           |
|         |                             |        |                |   | Cancel                    |
|         |                             |        |                |   | OK                        |
|         |                             |        |                |   |                           |
|         |                             |        |                |   |                           |
|         |                             |        |                |   |                           |
|         |                             |        |                |   |                           |
|         |                             |        |                |   |                           |
|         |                             |        |                |   |                           |
|         | Collectiv                   | ve Dos | e              |   |                           |

r 2009



**Assessment Details** 

Terrestrial Food Ingestion Data - Individual doses

Collective Dose

Age groups

| cow meat<br>cow's milk | Critical | 45.0  |       |       |
|------------------------|----------|-------|-------|-------|
| cow's milk             |          | 45.0  | 1.0   | 45.0  |
|                        | Critical | 240.0 | 1.0   | 240.0 |
| cow's milk products    | Critical | 60.0  | 1.0   | 60.0  |
| cow liver              | Critical | 10.0  | 1.0   | 10.0  |
|                        |          | C     | ancel | OK    |

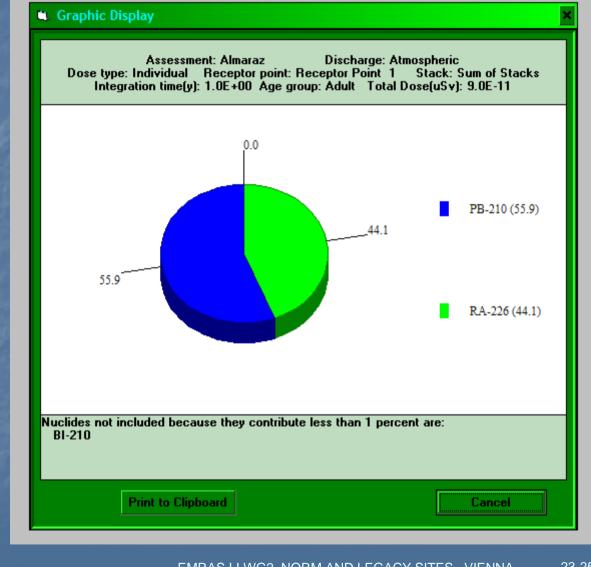
EMRAS I I WG2 NORM AND LEGACY SITES VIENNA

23-25 September 2009

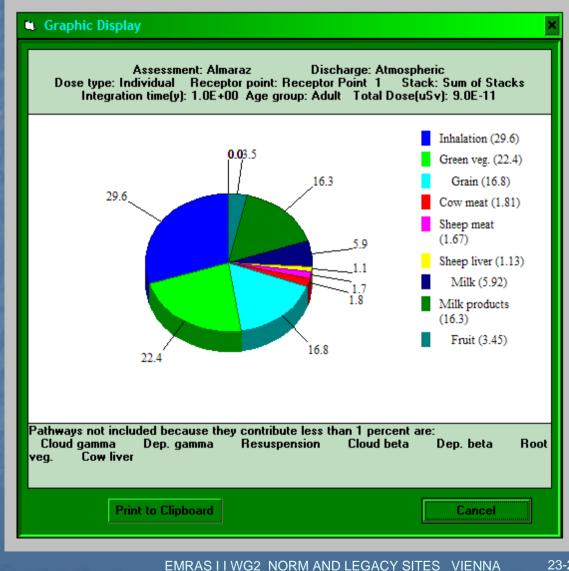
**Assessment Details** 000 Atmospheric - Occupancy and Inhalation Rate Data for Individual Doses Age Groups Adult assessment **Receptor Point Name** Time Spent Fraction Spent Location Factor Location Factor There (h/y) Indoor Cloud Gamma Deposited Gamma **Receptor Point** 1 8760 0.9 0.2 0.1 Adult Inhalation Rate 7300 OK. (m3y-1) Cancel Uccupancy/Inh Hates Dose Type: X Individual Dose Collective Dose

**Assessment Details** 000 Atmospheric - Occupancy and Inhalation Rate Data for Individual Doses Age Groups Adult assessment **Receptor Point Name** Time Spent Fraction Spent Location Factor Location Factor There (h/y) Indoor Cloud Gamma Deposited Gamma **Receptor Point** 1 8760 0.9 0.2 0.1 Adult Inhalation Rate 7300 OK. (m3y-1) Cancel Uccupancy/Inh Hates Dose Type: X Individual Dose Collective Dose

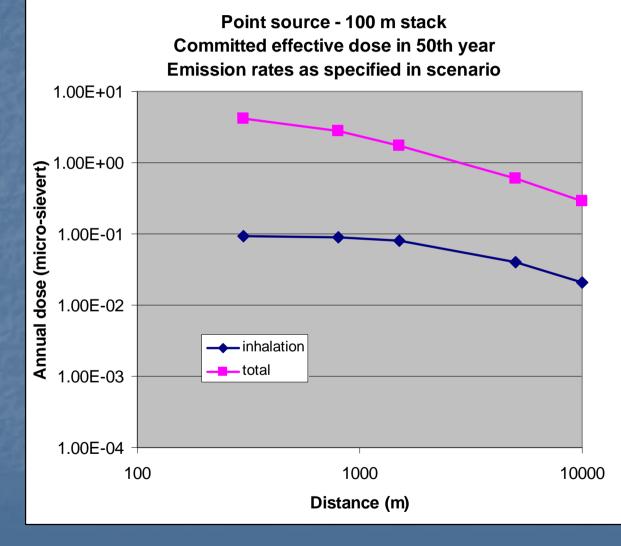
#### C View Nuclides


| View Nuclides                                                   | <u>×</u>                                                              |
|-----------------------------------------------------------------|-----------------------------------------------------------------------|
| Nuclides available in the chosen data libraries                 | Nuclides available in the chosen PLUME files for<br>individual stacks |
| Activity concentrations in terrestrial food: Non default file   | PLUME file for stack 1: Non default file                              |
| S-35 Cr-51 Mn-54 Fe-55 Fe-59 Co-58                              | Pb-210 Ra-226                                                         |
| Co-60 Zn-65 Sr-89 Sr-90 Zr-95 Nb-95                             |                                                                       |
| Tc-99 Ru-103 Ru-106 Ag-110m Sb-124 Sb-125 💽                     |                                                                       |
| External gamma dose from deposited activity: Non default file   | PLUME file for stack 2: Default file                                  |
| S-35 Cr-51 Mn-54 Fe-55 Fe-59 Co-58                              | FLOME THE TOT STACK 2. DETAULTHE                                      |
| Co-60 Zn-65 Sr-89 Sr-90 Y-90 Zr-95                              |                                                                       |
| Nb-95 Tc-99 Ru-103 Ru-106 Ag-110m Sb-124                        |                                                                       |
| ND-33 10-33 Nu-103 Nu-100 Ag-11011 3D-124                       |                                                                       |
| Resuspended air concentrations: Non default file                | PLUME file for stack 3: Default file                                  |
| S-35 Cr-51 Mn-54 Fe-55 Fe-59 Co-58 🛛 🔼                          |                                                                       |
| Co-60 Zn-65 Sr-89 Sr-90 Zr-95 Nb-95 🔤                           |                                                                       |
| Tc-99 Ru-103 Ru-106 Ag-110m Sb-124 Sb-125 📃                     |                                                                       |
| External beta from deposited activity: Default file             | PLUME file for stack 4: Default file                                  |
| H-3 C-14 P-32 S-35 Ar-41 Cr-51                                  |                                                                       |
| Mn-54 Fe-55 Fe-59 Co-58 Co-60 Zn-65                             |                                                                       |
| Se-75 Kr-85 Kr-85m Kr-87 Kr-88 Kr-89                            |                                                                       |
|                                                                 |                                                                       |
| Cloud beta dose: Default file                                   | PLUME file for stack 5: Default file                                  |
| H-3 C-14 P-32 S-35 Ar-41 Cr-51 🔼                                |                                                                       |
| Mn-54 Fe-55 Fe-59 Co-58 Co-60 Zn-65 🛛 🔤                         |                                                                       |
| Se-75 Kr-85 Kr-85m Kr-87 Kr-88 Kr-89 💽                          |                                                                       |
|                                                                 |                                                                       |
|                                                                 | Nuclides available in the chosen PLUME file for collective stack      |
|                                                                 | PLUME file for collective stack: Default file                         |
|                                                                 |                                                                       |
|                                                                 |                                                                       |
|                                                                 |                                                                       |
| Nuclides available in the file selected for a Marine assessment |                                                                       |
| Nuclide list available for the Marine model: Default file       |                                                                       |
|                                                                 |                                                                       |
|                                                                 |                                                                       |
|                                                                 | Close                                                                 |
|                                                                 |                                                                       |

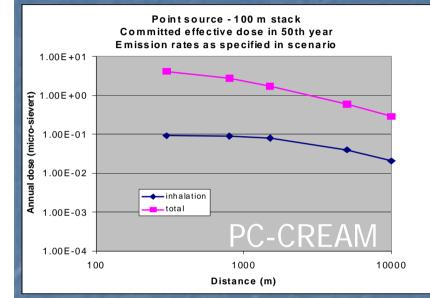
23-25 September 2009

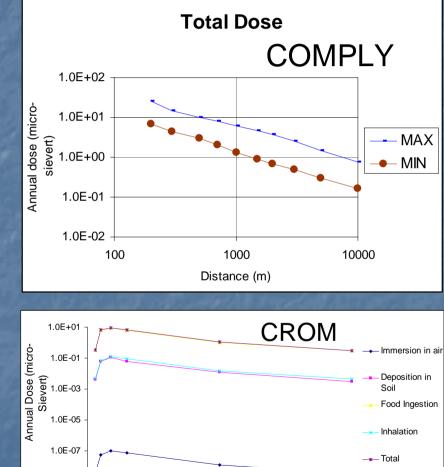

| 🔽 🔍 Run Options Selectio       | on 🗶 |  |  |  |
|--------------------------------|------|--|--|--|
| Assessment Execution Selection |      |  |  |  |
| L Atmospheric                  |      |  |  |  |
| Individual                     |      |  |  |  |
| Run Atmospheric                |      |  |  |  |
| Assessment Run Informat        | tion |  |  |  |
|                                |      |  |  |  |
|                                |      |  |  |  |
|                                | Done |  |  |  |
|                                |      |  |  |  |
|                                |      |  |  |  |
|                                |      |  |  |  |

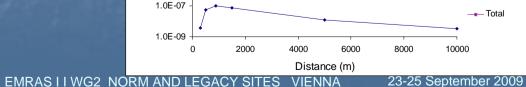
EMRASIIWG2 NORM AND LEGACY SITES VIENNA


| 🛚 Graphic Informatio                                                                                 | n _ 🗆 🗙                                                                                                                     |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Select Assessment<br>Atmospheric<br>Marine<br>River<br>Breakdown by nuclide<br>Individual dose to Ad |                                                                                                                             |
| Select Assessment Ty<br>Individual<br>Collective                                                     | pe -<br>Pie Chart Option<br>Nuclide Breakdown<br>Pathway Breakdown                                                          |
| Select Age Group<br>O Infant<br>O Child<br>O Adult                                                   | Select IntegrationTimes         I Year       500 Years         5 Years       10,000 Years         50 Years       Collective |
| Select Stack<br>Sum of Stacks<br>Stack 1<br>Stack 2<br>Stack 3<br>Stack 4<br>Stack 5                 | Select Receptor point<br>Receptor Poin Receptor E<br>Receptor B<br>Receptor C<br>Receptor D<br><u>Draw Graph</u> Cancel     |




EMRAS I I WG2 NORM AND LEGACY SITES VIENNA





### Inhalation and total doses calculated for the hypothetical point-source scenario using PC-CREAM (radionuclides <sup>210</sup>Po, <sup>210</sup>Pb)



#### Modelling the hypothetical scenario





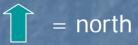


### Modelling the hypothetical scenario

Point source tests

- COMPLY 2 modellers tested, results the same
- PC-CREAM 2 modellers tested, results the same, both noted difficulties in manipulating files – wind rose data and nuclide library
- CROM 1 modeller tested
- COMPLY doses calculated higher than PC-CREAM doses but CROM in good agreement with PC-CREAM
- COMPLY and CROM are screening models and PC-CREAM is a very detailed impact assessment model

#### Real point source scenario


2 power plants, 5 stacks

Data
Discharge data (Ra-226, Ra-228)
5 monitoring points
Air concentrations
Soil concentrations
Rainfall
Wind data
No dietary data

#### Point Source Scenario



M1-5 = monitoring points



EMRAS I I WG2 NORM AND LEGACY SITES VIENNA 23-25 September 2009

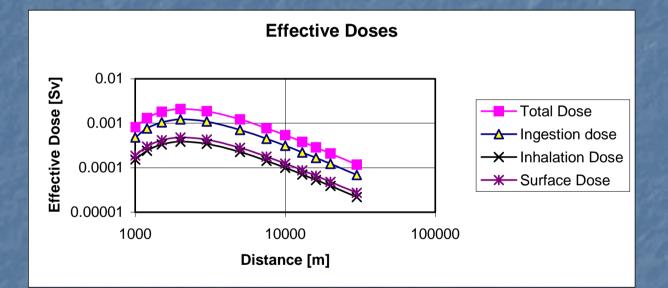
## Modelling real point source scenario

```
There are two power plants (A and B), and five sampling sites (M1 to M5).Power plant B is 3 km due west of Plant A.In ASSESSOR, Stack 1 = Plant A, is described as distance zero, bearing zero.Stack 2 = Plant B, is described as distance 3000 metres and bearing 270 degrees.Integration time: 50 years for an adult.Discharge data:Discharges of ^{226}Ra and ^{238}U (assuming ratio of 1:1) fromPlant A50,000 MBq a^{-1} = 5 \times 10^{10} Bq a^{-1}.Plant B3,500 MBq a^{-1} = 3.5 \times 10^9 Bq a^{-1}.
```

**Exposure pathways**: all consumption pathways were used, and all external /inhalation pathways were used except for those concerned with beta doses.

# The distances and bearings of the sampling points

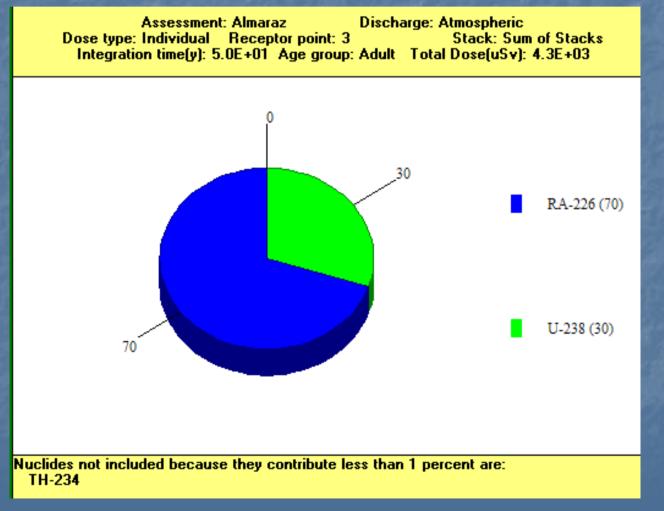
| Sampling point | Distance from unit A | Bearing from unit A |
|----------------|----------------------|---------------------|
|                | (km)                 | (degrees)           |
| M1             | 3,800                | 135                 |
| M2             | 2,800                | 157                 |
| M3             | 3,100                | 135                 |
| M4             | 2,300                | 135                 |
| M5             | 300 (minimum value   | 0                   |
|                | accepted)            |                     |


## Modelling real point source scenario

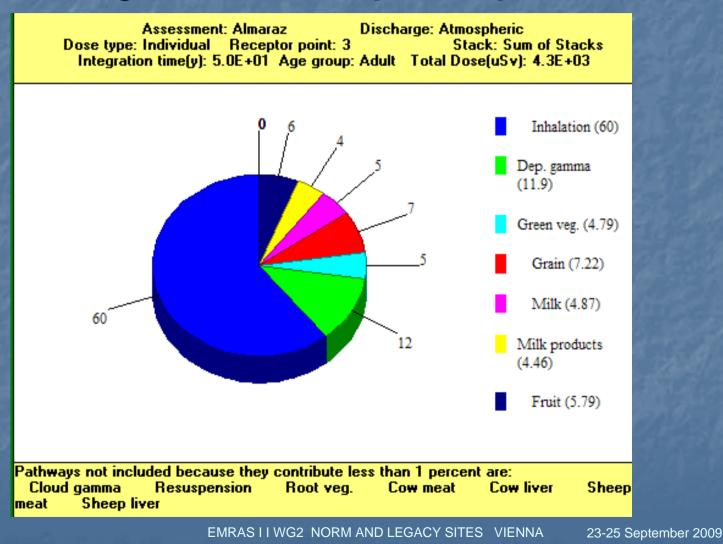
- Meteorological Data: the data supplied in the scenario description was not suitable for use in PC-CREAM. Therefore the UNI50D.MET default file from PC-CREAM was used, together with the Pasquill/Smith scheme of stability factors.
- Ingestion rates: these were all set to average values, except for cow's milk and grain which were set at 'critical' values.
- Occupancy/Inhalation rates: these were set to the PC-CREAM default values.
- Receptor deposition values (Bq m<sup>-2</sup>) for <sup>238</sup>U and <sup>232</sup>Th were extracted from the relevant plist100.ps! file. This file provided deposition rates in Bq m<sup>-2</sup> s<sup>-1</sup>. These values then converted to values in Bq m<sup>-2</sup>.

Modelling real point source scenario Real scenario - lignite power plant Predicted and reported deposition rates

| PC CREAM |                                           | Measured                                   |                              |                                            |
|----------|-------------------------------------------|--------------------------------------------|------------------------------|--------------------------------------------|
|          | <sup>238</sup> U<br>(Bq m <sup>-2</sup> ) | <sup>232</sup> Th<br>(Bq m <sup>-2</sup> ) | <sup>238</sup> U<br>(Bq m⁻²) | <sup>232</sup> Th<br>(Bq m <sup>-2</sup> ) |
| Plant A  | 2.5 – 4.1                                 | 0.12 - 0.19                                |                              |                                            |
| Plant B  | 1.5 – 2.8                                 | 0.07 – 0.14                                |                              |                                            |
| Total    | 4.0 - 6.9                                 | 0.19 - 0.33                                | 2.36 - 11.02                 | 0.19 – 1.20                                |
|          |                                           |                                            |                              |                                            |


#### Modelling real point source scenario Predicted annual doses from COMPLY




PC-CREAM predicts a range of 2.8 – 4.3 mSv, depending on what receptor and what stack is being considered

EMRAS I I WG2 NORM AND LEGACY SITES VIENNA 23-25 September 2009

# Calculated <sup>226</sup>Ra and <sup>238</sup>U concentrations at receptor point M3



# Calculated doses for different pathways at receptor point M3



#### Summary

Hypothetical scenarios are useful for model development and testing, but do not allow model validation

- Real scenarios require assumptions to deal with non-ideal situations
- There is still a good deal of work to do on the real scenarios

There is still considerable scope for model development, particularly for situations involving multiple area sources and feedback processes e.g. Gela