Complex regulation for sustainability in agriculture

Determination of the criteria of possible land use: forest, industrial plants, feed production, food production

Beata VARGA Central Agricultural Office Food and Feed Safety Directorate HUNGARY

EMRAS II, WG2

January 2010

1. Clear, well understandable, definite and simply regulation, which is defendable before the court if any disagreement occurs

2. Guideline level system for managing terrestrial food-chain: food, feed, soil by the end of EMRAS II.

Harmonisation ?

EUR 22805 EN - 2007

2

AVAILABLE:

- Several innovative decision support systems for handling emergency,
 - they are perfect for the changing conditions of an emergency situation
- Regulation of caesium content of food and feed as follow up of the Chernobyl accident (EU)
- Regulation for content of several isotopes in food following an emergency (EU)
- CODEX guideline levels for radionuclides in foods contaminated following a nuclear or radiological emergency for use in international trade
- Drinking water: ³H, indicative dose, ²¹⁰Po, ²¹⁰Pb, ²²²Rn
- Basic safety rule: 1 mSv/year additional dose for public (ICRP, IAEA, EU)

LACK:

Derived guideline levels for <u>foodchain</u> for normal situation: concentration values in food, feed and soil which regarded healthy with very low risk (according to the current knowledge), use <u>without any restriction</u>

GOAL in the frame of EMRAS II:

<u>Isotope specific</u> guidelines levels for food, feed and soil derived from dose limits of inhabitants – use <u>normal</u> situation, <u>achievable conditions for remediation</u> work, <u>prolonged</u> emergency situation (longer than 1 year)

NON EMERGENCY SITUATION

Requirements:

clear, definite regulation, measure or action taken quick and efficient, action should be defensible before the court assessment from the regulatory side: action taken based on the monitoring results, imission (starting point not the emission, not the source term) isotopes: possible releases from nuclear installations (EC RadProt 129 and 143, EUR 19841), long-lived nuclides (241 Am, 237 Np, 135 Cs, 129 I, 99 Tc, 94 Nb, 79 Se, 14 C) natural radionuclides (terrestrial), violence – not only T_{1/2}>> in case of food and feed (do not group the isotopes – 131 I) system should ensure the possibility of active land-management <u>Tool</u>: isotope-specific guideline level-system, derived from dose limits for inhabitants:

 radionuclide concentration in FOOD, ready (300 isotopes): tolerance level derived from 0.1mSv/year acceptable level derived from 1mSv/year

 radionuclide concentration in FEED of ruminants, pigs, poultry, ready (178 isotopes):
 acceptable level derived from food acceptable level

radionuclide concentration in SOIL (for different land-use)
 deriving from: food acceptable level

 feed acceptable level
 for industrial use - exemption limit (?)
 to be done in 2010

Natural isotopes – root uptake

Available data: Pb, Po, Ra, Th, U

Feed:

grasses pasture fodder leguminous

Soil types (not every type for every product): sand, clay, loam, organic

		acceptable level for adult, Bq/kg fresh	TF kg/kg	soil, Bq/kg	acceptable level in soil, Bq/kg
	Pb-210	0,6	2,00E-02	30	30
•	Po-210	0,3	5,60E-03	54	50
	Ra-226	1	4,00E-02	25	20
	Th-228	6	3,40E-03	1765	1700
	Th-230	2	3,40E-03	588	500
	Th-232	1	3,40E-03	294	200
	U-234	8	2,15E-02	372	300
	U-238	9	2,15E-02	419	400

Same logic for artificial isotopes – to be done

Food :

cereals maize leafy vegetable non-leafy vegetable leguminous vegetable root crops tubers fruits

Generic values for TF:

herbs

plant type: grass, fodder higher; tubers, cereals smaller
soil type: organic, sand higher

Calculation to be done when only feed is produced

Understorey:

shrub layer (> 0.5m) herb layer(< 0.5m) moss layer

Critical use: consumption of wild food (might be target of restriction)

Available data for transfer from soil to edible mushroom : ¹³⁷Cs, ⁹⁰Sr, ²³⁹⁺²⁴⁰Pu, ²³⁴U, ²³⁸U, ²²⁸Th, ²³⁰Th, ²³²Th, ²²⁶Ra

	acceptable level for adult, Bq/kg fresh	concentration in mushroom, Bq/kg dw	T _{ag} , m²/kg dw	acceptable level in soil, Bq/m ²	acceptable level in soil, Bq/kg
Sr-90	10	87	6.00E-03	1.45E+04	181
Cs-137	30	261	5.50E-02	4.74E+03	59
Ra-226	1	9	2.50E-02	-	348
Th-228	6	52	8.50E-02	-	614
Th-230	2	17	4.00E-02	-	435
Th-232	1	9	8.00E-02	-	109
U-234	8	70	0.1	-	696
U-238	9	78	0.095	-	824
Pu-239+240	2	17	0.0003	5.80E+04	725

Understorey:

shrub layer (>0.5m) herb layer(< 0.5m)

moss layer

Available data for transfer of berries: mainly ¹³⁷Cs, ⁶⁰Co, ¹⁰⁶Ru, ¹²⁵Sb, ¹⁴⁴Ce, ¹⁵⁴Eu, ²³⁹Pu – more study not in TECDOC

Acceptable level for ¹³⁷Cs in soil round down [min (mushroom, berries)]: 20Bq/kg Effective half-life: 7.5 years (Ukraine)

137 Cs	concentration in berries, Bq/kg dw	T _{ag} , m²/kg dw	acceptable level in soil, Bq/m ²	acceptable level in soil, Bq/kg
bilberry	227	5.00E-02	4.55E+03	57
cranberry	278	1.20E-01	2.31E+03	29
cloudberry	214	1.00E-01	2.14E+03	27
raspberry	173	3.00E-02	5.78E+03	72
blackberry	405	2.00E-02	2.03E+04	253
wild strawberry	195	4.00E-03	4.87E+04	609

	acceptable level in soil, Bq/kg
Sr-90	100
Cs-137	20
Ra-226	300
Th-228	600
Th-230	400
Th-232	100
U-234	600
U-238	800
Pu-239+240	700
	8

Suggested acceptable level in soil of forest, without any restriction derived from acceptable level for adults

<u>Characteristics</u>: radionuclides can be efficiently trapped and recycled, long residence time

Influencing factor I (variability index)		T _{ag} (m ² /kg dw) hierarchy for trees	
Soil type	100 (10-200)	peat-gley > peat-podzolic > soddy-podzolic > podzolized chernozems	
Moisture regime	10 (3-70)	central depression > terrace basement > terrace slope > slope upper part > watershed top	
Stand composition	4 (5-10)	monospecific coniferous stand > mixed coniferous-deciduous forest	
Stand age	4 (3-8)	0-30 > 30-60 > 60-90 > +90	
Tree species	2 (2-3)	aspen > oak > birch > pine > lime > spruce	

Goal and management:

- Remove contaminant from soil: aspen and semihydromorphic condition
- Keep contamination localised decidous forest automorphic condition, willow

Monitoring: best indicative organs are leaves and 1 year-old needles

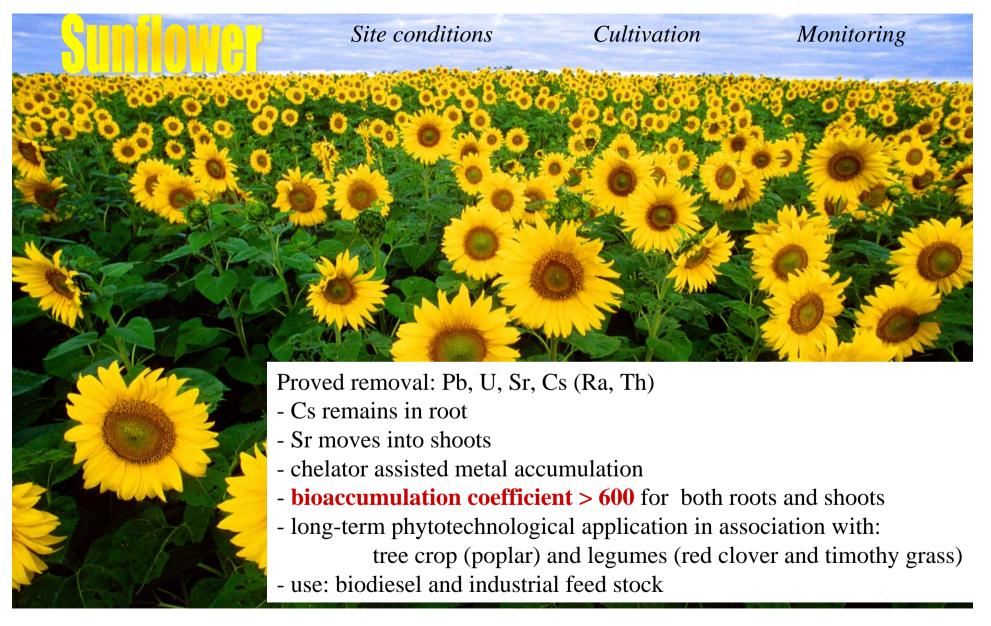
Steady state phase: quasi-equilibrium applicable after 5-10 years of deposition, available data Cs, Sr

Calculation to be done when just wood is used

For industrial use - exemption limits

1

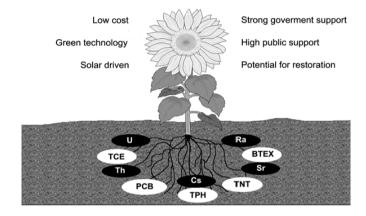
H. Vandenhove*, M. Van Hees : Fibre crops as alternative land use for radioactively contaminated arable land Journal of Environmental Radioactivity 81 (2005) 131-141

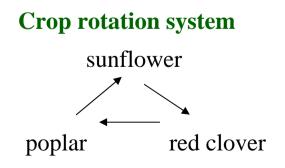

Purpose of producing:

- cleaning of soil sunflower (tobacco)
- get useful products even from a contaminated area fibre crops, willow

Circumstances: sandy soil is the most vulnerable – high T_{ag} values

	flax		hemp	
¹³⁷ Cs	acceptable level in soil, Bq/m ²	acceptable level in soil, Bq/kg	acceptable level in soil, Bq/m ²	acceptable level in soil, Bq/kg
Stem as biofuel	250 000	3125	1 050 000	13 125
Fibre as building material			1 850 000	23 125
Use of straw after retting / mechanically separated fibre as biofuel	free		740 000	9 250
Seed flour	1 000 000	12 500	160 000	2 000
Use of seeds for extraction of oil	free		600 000	7 500


Long-term phytotechnological applications of sunflower for the clean up of sewage sludge, heavy metals, radionuclides and organic contaminants and pollutants



Clean up procedure by sunflower

Abundant biomass, Trace element accumulation including radionuclides Soil amendment with chelators - enhanced metal uptake HEDTA (hydroethylenediaminetriacetic acid) NTA (nitrilotriacetic acid) and FYM (farm yard manure) Harvesting Biodiesel and industrial feed stock

Bioremediation technology is based on use of plants to cleanup metals, metalloid including radionuclides

Vegetation cap: prevention of soil erosion by rain and storm

Foliar uptake of metals from aerosols (Ficus and Nerium)

Rhizofiltration: uptake of metals by plant roots from surface water (phytofiltration) Phytoextraction: uptake and bioconcentration of metals in plant tissues from soil

Phytostimulation: rhizosphere exudates accelerate uptake of metals

Phytostabilisation: root exudates complex with metals, thus bioavailability of metals decrease in soil/ground water

Phytoimmobilisation: fungi immobilize metals in rhizosphere

Phytovolatilisation: some elements (Se, Hg) in soil and ground water are removed by transpiration

t e

AVOIDE

Uptake exclusion

Biochemical changes on the root surface

Binding to cytosolic ligands

Extracellular deposition

Shedding of plant parts

Metal accumulation Transport into vacuole Phytochelatins, metallothioneins Binding to cell wall

TOLERATE

Selection of plants:

- •Growth rate and yield
- •Depth of rootzone
- •Bioaccumulation
- •Rizospheric changes

Element	Conc of leaves, mg/g dw	No of plants
As	> 22	2
Cd	> 0.1	1
Со	> 1	28
Cu	> 1	37
Mn	> 10	9
Ni	> 1	317
Pb	> 1	14
Zn	> 10	11