
Ministry of Health National Centre of Radiobiology and Radiation Protection Sofia - Bulgaria

Assess of the need for waste water treatment plant of the uranium mining site "Iskra", Katina

> Kremena Ivanova Radostina Georgieva

Uranium mining area "Iskra" is located in west "Stara Planina"mountain , next to the village of Katina and city Novi Iskar about 15 km north of Sofia.

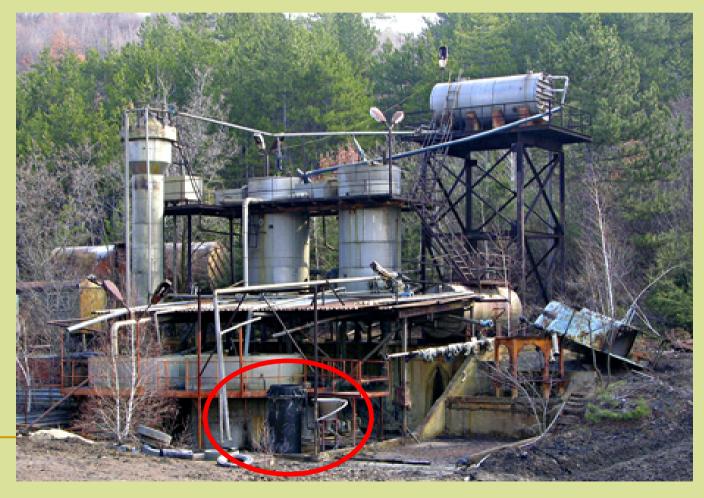
- Area "Iskra" is located in the catchment of the river "Taina", which is left affluent of the River Iskar.
- Total area is approximately 4 km² and long 1.2 kilometers.
- Moderate continental climate, bordering the mountain area. (There are cold winters with average January temperatures below 0 ° C and a long and hot summers with average July temperatures around 20 °C typically).

- Precipitation in the area have a clearly expressed maximum principal in spring summer season (May - June) and the main minimum in winter (February)
- Average annual rainfall is in the range 640 -700 mm
- The prevailing wind direction during the year is from the west.
- Area of Katina village is approximately 20.527km² with a population of about 931 citizens

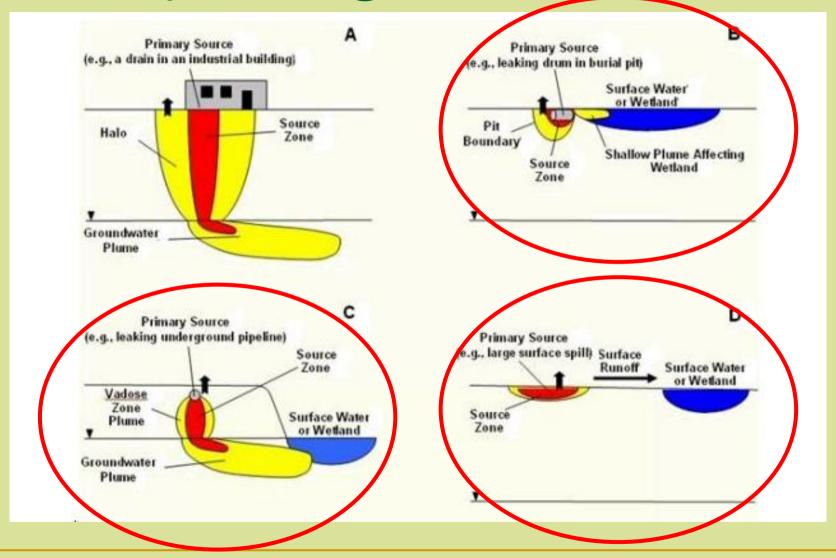
OPERATION HISTORY

- 1956 The development of the deposit began through open-pit mining of peak "Brezy brah" Simultaneously trace the horizontal facilities in lower horizons.
- 1962 Classic mining shut down due to depletion of stocks
- 1982 Reassessment of stocks was made
- 1985 In situ leaching technology was organized

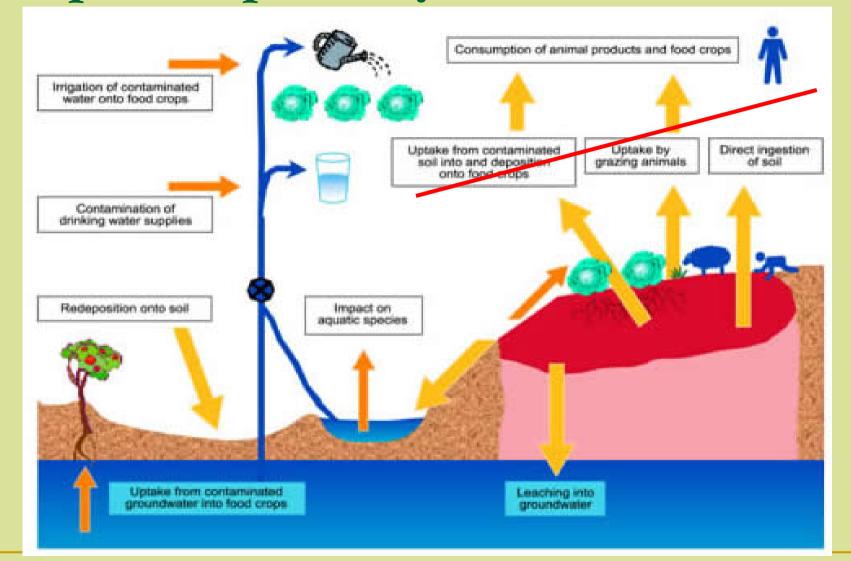
ACTUAL SITUATION


- 1992 Closing of the Uranium mining
- 2000 Technical liquidation was completed. It consisting of:
 - Above-ground facilities
 - Dismantling the equipments
 - Demolishing the buildings
 - Decontamination
 - Depositing the radioactive waste
 - Underground facilities
 - Closing with two concrete walls

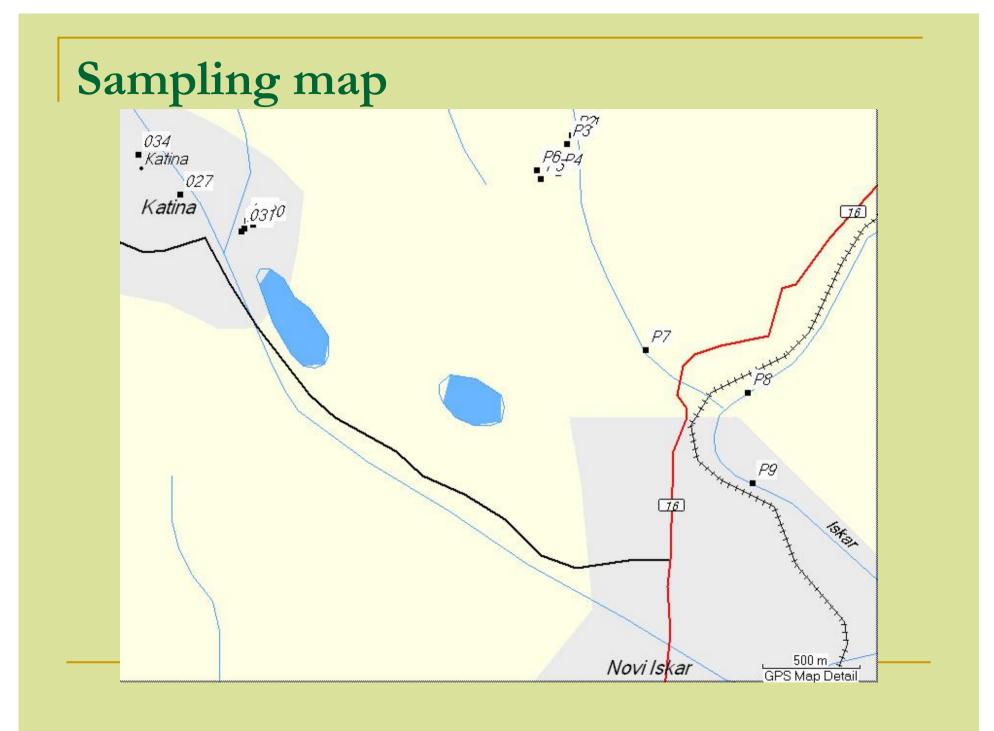
ACTUAL SITUATION


- 2005 The technical remediation was completed. It consist of:
 - Stabilization and reshaping of the surface
 - Removing of the surface water
 - Covering in no radioactive soil layer
 - Measuring of the gamma dose rate
 - Calculating the thickness of the layer
 - Covering in the soil layer
- 2008 The biological remediation was completed. It consist of:
 - Revegetation
 - Growing a plants or a bushes

ACTUAL SITUATION


2005 – The polluted water is purified with sorption column

Pathways of migration


Exposure pathways

MATERIALA AND METHODS

Sampling

Sampling point	Description of the area	Environmental components
P1	Before SC	water
P2	After SC	water, sediment
P3	Gully after SC	soil
P4	Waste rock pile	air
P5	Lake "Kiselo"	water, sediment
P6	100 m. after lake	water, sediment
P7	River "Taina"	water, sediment
P8	River "Iskar"	water, sediment

MATERIALA AND METHODS

Environmental components	Radiation parameter	Methods
air	Rn concentration Gamma dose rate	Direct measurement
water	U _{nat} Ra-226, gross alpha activity	Radiochemistry
Soil, sediment	Natural radionuclides	Gamma spectrometry

RESULTS – direct measurement

Sampling point	Gamma dose rate [nSv/h]	Rn concentration [Bq/m ³]
P1	230 ± 30	
P2	250 ± 30	
P3	230 ± 30	
P4	350 ± 40	16 ± 7
P5	200 ± 20	
P6	180 ± 20	
P7	160 ± 20	
P8	160 ± 20	

RESULTS – soil and sediment samples

Sampling	Acti	vity concentra	tion
point	U _{nat} .	²²⁶ Ra	²³² Th
	[mg/kg]	[Bq/kg]	[Bq/kg]
P2	116 ± 8	122 ± 6	15.8 ± 3.4
P3	10.3 ± 2.0	235 ± 11	40.3 ± 3.8
P5	14.5 ± 1.8	165 ± 7	33.9 ± 2.0
P6	16.0 ± 2.8	38.0 ± 2.2	47.3 ± 3.7
P7	9.9 ± 1.6	35.4 ± 1.7	54.4 ± 4.1
P8	5.5 ± 0.8	35.0 ± 1.7	36.2 ± 2.1

RESULTS – water samples

Sampling		Activ	vity concent	ration
point	PH	U _{nat} .	²²⁶ Ra	Gross α
		[mg/l]	[Bq/l]	[Bq/I]
P1	2.63	0.80 ± 0.08	0.019	10.44 ± 0.13
P2	2.64	0.54 ± 0.07	0.018	7.02 ± 0.13
P5	2.91	0.14 ± 0.02	0.006	1.74 ± 0.15
P6	6.80	0.09 ± 0.02	0.004	≤ 0.2
P7	8.16	0.08 ± 0.02	0.004	≤ 0.2
P8	7.62	≤ 0.02	0.004	≤ 0.2

Dose assessment – type of assessment (ICRP- Publication 101)

SITUATION	TYPE OF ASS	SESSMENT
	Prospective	Retrospective
Practice	Design of new facility or compliance with the dose constraint for an upcoming year	Dose to the public from past operations or compliance with dose the dose constraint for past year
Existing	Future prolonged exposures (e.g., after remediation)	Earlier exposures
Emergency	Emergency planning	Actual impacts after emergency

Dose assessment – type of assessment (ICRP- Publication 101)

Existing situations may require prospective assessments or retrospective assessments to determine the implications of proposed actions. The assessment provides the basis for understanding the future consequences if no actions are taken, or for understanding the dose averted if certain actions are implemented. Dose assessment – type of assessment (ICRP- Publication 101)

Deterministic methods which involve the direct multiplication of selected point values of parameters and environmental concentrations:

- screening method very conservative assumptions are made to estimate dose using concentrations of radionuclides at the point of discharge to the environment.
- general assessment involves populations, pathways.

Model for dose assessment

ReCLAIM

Version 3.01 April 2008

environment@nexiasolutions.com www.nexiasolutions.com/environment

Accept Disclaimer and continue assessment >>>

Disclaimer: The tool ReCLAIM version 3.0 has been developed by Nexia Solutions Ltd for the Nuclear Decommissioning Authority. The tool is made available on an as-is basis without any guarantee or warranty of any kind, expressed or implied. The NDA, Nexia, the authors or the reviewers accept no liability resulting from the use of this tool or its documentation: nor does the above warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. Implementation of the tool and interpretation or use of the results are the sole responsibility of the user. The tool is provided free of charge but is not supported in any way by the NDA or Nexia Solutions. Mention of trade names is for information

© Nexia Solutions Limited & Nuclear Decommissioning Authority

Dose assessment – without sorption column

		Radionuclide Measured Va	lues	
Radionuclide	Soil (Bq g-1)	Surface water (Bq L=1)	Aquifer water (Bq L⁺¹)	Surface contamination (Bq cm*²)
Ra+226		1.90E-02		
U+238		2.02E+01		

USER Specified

d-Mod1

Exposure Pathway	Parameter	Default Scenario	Default	Parameters Changed	Basis
Ing Beef	Beef Ingestion Rate (kg y-1)	0	30	30	
Ing Beef	Cattle Grass Ingestion Rate (kg d-1)	0	65	30	
Ing Beef	Cattle Soil Ingestion Rate (kg d-1)	0	0	0	
Ing Beef	Cattle Water Ingestion Rate (L d-1)	0	0	0	
Ing Milk	Milk Ingestion Rate (kg y-1)	0	240	240	
Ing Milk	Cattle Grass Ingestion Rate (kg d-1)	0	65	65	
Ing Milk	Cattle Soil Ingestion Rate (kg d-1)	0	0	0	
Ing Milk	Cattle Water Ingestion Rate (L d-1)	0	0	0	
Ing Green Veg	Green Veg Ingestion Rate (kg y-1)	0	35	35	
Ing Root Veg	Root Veg Ingestion Rate (kg y-1)	0	95	35	
Ing Fish	Fish Ingestion Rate (kg y-1)	0		5	
Ing Aquifer Water	Water Ingestion Rate (L y-1)	0	350	300	
Ing Surface Water	Water Ingestion Rate (L y-1)	0	350	300	

		Output Summary			
Model Selected	USER-defined scenario			Total Dose : Dose Target	
Dose Target (mSv y ⁻¹)	3.00E-01	Select model to re	port	1.82	
Total Dose from Assessment (mSv y-1)	5.46E-01	d-Mod1		FAIL	
Selected Nuclide					1
Most limiting Scenario	USER Specified	Calculate depth at which	VIEW MOST LIM.	ITING SCENARIO OVERVIEW >>>	
Assessment Type	DOSE	model = PASS			
Most limiting nuclide	U+238		HIDE ACTIVE PATH	WAYS FOR MOST LIMITING SCENA	RIO

Dose assessment – with sorption column

		Radionuclide Measured ¥a	lues	
Radionuclide	Soil (Bq g=1)	Surface water (Bq L=1)	Aquifer water (Bq L=1)	Surface contamination (Bq cm-²)
Ra+226		1.80E-02		
U+238		1.37E+01		

USER Specified

d-Mod1

Exposure Pathway	Parameter	Default Scenario	Default	Parameters Changed	Basis
Ing Beef	Beef Ingestion Rate (kg y-1)	0	30	30	
Ing Beef	Cattle Grass Ingestion Rate (kg d-1)	0	65	30	
Ing Beef	Cattle Soil Ingestion Rate (kg d-1)	0	0	0	
Ing Beef	Cattle Water Ingestion Rate (Ld-1)	0	0	0	
Ing Milk	Milk Ingestion Rate (kg y-1)	0	240	240	
Ing Milk	Cattle Grass Ingestion Rate (kg d-1)	0	65	65	
Ing Milk	Cattle Soil Ingestion Rate (kg d-1)	0	0	0	
Ing Milk	Cattle Water Ingestion Rate (L d-1)	0	0	0	
Ing Green Veg	Green Veg Ingestion Rate (kg y-1)	0	35	35	
Ing Root Veg	Root Veg Ingestion Rate (kg y-1)	0	95	35	
Ing Fish	Fish Ingestion Rate (kg y-1)	0		5	
Ing Aquifer Water	Water Ingestion Rate (L y-1)	0	350	300	
Ing Surface Water	Water Ingestion Rate (L y-1)	0	350	300	

Output Summary				
Model Selected	USEP defined scenario		Total Dose : Dose Target	
Dose Target (mSv y=1)	3.00E-01	Select model to report	1.24	
Total Dose from Assessment (mSv y ⁻¹)	3.71E-01	d-Mod1	FAIL	
Selected Nuclide				
Most limiting Scenario	USER Specified	Calculate depth at which	VIEW MOST LIMITING SCENARIO OVERVIEW >>>	
Assessment Type	DOSE	model = PASS		
Most limiting nuclide	U+238		HIDE ACTIVE PATHWAYS FOR MOST LIMITING SCENARIO	

Treatment of uncertainties in dose assessment

Conclusion

- It is difficult to take a decision using only dose assessment when the doses is low
- Need of additional cost assessment on purpose to apply ALARA
- Alternative options have to be assessed