
Uncertainty and WG7 
The activities of EMRAS will focus on areas where uncertainties remain in the predictive capability of 
environmental models, notably in relation to the consequences of releases of radionuclides to particular 
types of environment 
 

Last Questionnaire: 
6. What is the robustness (uncertainty) accepted by your organization or regulatory body 
when modelling accidental tritium releases? 
 
To be conservative is the requirement, but with no details on how to control the 
robustness. Some participants replayed simpler NO IDEA 
 
In the PAST, uncertainty of models have been discussed in VAMP, BIOMOVSII, 
BIOMASS and also EMRAS I. More recently we have some news. 
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Model evaluation is the process for generating information over the life cycle of the project that helps 
determine whether a model and its analytical results are of sufficient quality to serve as the basis for a 
decision. Model quality is an attribute that is meaningful only within the context of a specific model 
application. In simple terms, model evaluation provides information to help answer the following 
questions: (a) How have the principles of sound science been addressed during model development? (b) 
How is the choice of model supported by the quantity and quality of available data? (c) How closely does 
the model approximate the real system of interest? (d) How well does the model approximate the real 
system of interest? (d) How well does the model perform the specified task while meeting the objectives set 
by quality assurance project planning? 
 
Sensitivity analysis: Sensitivity analysis is the study of the effect of changes in input 
values on the output from a model. This can be done by either varying a single 
parameter at a time to see the effect on the output or by varying a suite of input 
parameters simultaneously. It enables the user to identify the parameter or groups of 
parameters to which the model is most sensitive and, as such, can be used to direct 
research programmes. 
 
 



Uncertainty: Uncertainty measures the lack of knowledge of the system under 
investigation, which in radiation dose assessment terms will relate to how well doses 
of interest can be estimated. For example, how well are the parameter values in a 
calculation of dose known? If further investigations can reduce the uncertainty in these 
parameter values by increasing the accuracy and precision with which they are known 
then this is epistemic or so called Type B uncertainty (IAEA, 1989). This is applicable to 
a parameter that is thought to have a well-defined value, but due to inevitable 
experimental difficulties there is some uncertainty about that value. In many dose 
assessment applications, a detailed knowledge of the processes involved is not required 
and a simpler parametric representation can be employed that captures the essential 
details. This adds modelling uncertainty by simplifying relationships but allows the 
average parameter value to represent the process adequately. For example, the transfer 
coefficient for a radionuclide between cow's intake and milk is uncertain and is 
determined by a multiplicity of physiological processes, but a single average value could 
be determined by a suitable experiment. In principle, carrying out further investigations 
to improve knowledge can reduce uncertainties. However, uncertainty is not simply the 
absence of knowledge. Uncertainty can still prevail in situations where further 
information becomes available. Also, new information can either decrease or increase 
perceived uncertainty by revealing the presence of complexities previously unknown or 
poorly understood. In other words, more knowledge does not necessarily imply less 
uncertainty. Though it may reveal uncertainties that were previously hidden, it may not 
help to resolve them. 
 
Models have two fundamental types of uncertainty:  
� Model framework uncertainty, which is a function of the soundness of the model’s underlying 
scientific foundations.  
� Data uncertainty, which arises from measurement errors, analytical imprecision, and limited sample 
size during collection and treatment of the data used to characterize the model parameters. 
These two types of uncertainty have a reciprocal relationship, with one increasing as the other decreases.  

 
 
Because different models contain different types and ranges of uncertainty, it can useful to conduct 
sensitivity analysis early in the model development phase to identify the relative importance of model 
parameters 



 
Model complexity can be constrained by eliminating parameters when sensitivity analyses show that they 
do not significantly affect the outputs and when there is no process-based rationale for including them. 
However, a variable of little significance in one application of a model may be more important in a 
different application.  Hence, it is important to identify the existing data and and/or field collection 
efforts that are needed to adequately parameterize the model framework and support the application 
of a model. The NRC Committee on Models in the Regulatory Decision Process recommended that models 
used in the regulatory process should be no more complicated than is necessary to inform regulatory 
decision and that it is often preferable to omit capabilities that do not substantially improve model 
performance  
Qualitative assessments: Some of the uncertainty in model predictions may arise from sources whose 

uncertainty cannot be quantified. Examples are uncertainties about the theory underlying the model, 
the manner in which that theory is mathematically expressed to represent the environmental 
components, and the theory being modeled. Subjective evaluation of experts may be needed to 
determine appropriate values for model parameters and inputs that cannot be directly observed or 
measured. Qualitative assessments are needed for these sources of uncertainty. These assessments 
may involve expert elicitation regarding the system’s behavior and comparison with model forecasts.  

� Quantitative assessments: The uncertainty in some sources — such as some model parameters and 
some input data — can be estimated through quantitative assessments involving statistical uncertainty and 
sensitivity analyses. These types of analyses can also be used to quantitatively describe how model 
estimates of current conditions may be expected to differ from comparable field observations. However, 
since model predictions are not directly observed, special care is needed when quantitatively comparing 
model predictions with field data. 
 
Peer review provides the main mechanism for independent evaluation and 
review of environmental models. Peer review provides an independent, 
expert review of the evaluation; therefore, its purpose is two-fold:  
. To evaluate whether the assumptions, methods, and conclusions derived 
from environmental models are based on sound scientific principles.  
.To check the scientific appropriateness of a model for informing a specific 
regulatory decision. (The latter objective is particularly important for 
secondary applications of existing models.) 
 
 
 
The management of uncertainty is not just a technical exercise. It is difficult to 
quantify uncertainty and in most cases the quantification of uncertainty is itself 
uncertain. 
Uncertainty is, in part, socially constructed and its assessment includes subjective 
judgements. Those carrying out such assessments should consider a number of 
issues before commencing: 
• Who is the assessment being carried out for? 
• What decisions will be made based on the assessment? Will inclusion of uncertainty 
and variability improve those decisions? 
• Will incorporation of uncertainty and variability improve the assessment? 
• What are the major sources of uncertainty and variability? How will these be kept 
separate in the analysis? 
• What are the time and resource implications of including uncertainty and variability? 
Is this effort justified? 
• Are the necessary skills and experience available? 



• What methods of incorporating uncertainty and variability are to be used? Have the 
strengths and weaknesses of those methods and other methods that could 
potentially be used been evaluated and compared? 
• How will the results be communicated to the public and decision-makers? 
 
 
 
The sources of uncertainty in the predictions from models can be grouped 
into broad categories as illustrated in figure  and outlined here: 
 
• Measurement uncertainty. This is the uncertainty in the field or laboratory data 
on which models are based, eg, lack of precision, inaccuracy, sampling and analysis 
errors. 
 
• Parameter value uncertainty. This is caused by not knowing the most 
appropriate values to select for the various parameters of a model. Lack of data that 
could have been collected but have not, or data that may be practically 
immeasurable (too expensive and resource intensive). There may be conflicting 
evidence or different data sets available. Parameter value uncertainty can also arise 
when the parameters of a model are not closely related to measurable quantities, as 
this can result in ambiguities of interpretation of available data. 
 
• Conceptual modelling uncertainty. This is the uncertainty associated with 
forming a coherent representation of the processes involved in the system being 
modeled based on the available data. General considerations of simplicity, adequacy and 
underlying physical principles will govern the selection of an appropriate model where a 
choice might exist. Model structural error is often overlooked when performing 
uncertainty analysis with the implicit assumption that the model is a good 'fit' to the 
environment that it purports to represent. Many environmental models perform badly 
against observations (Beven, 2002). 
 
• Computational uncertainty. This arises from the representation of the selected 
model in computational terms. It includes the use of simplifying assumptions, 
discretisation and numerical methods of solution. 
 
• Scenario uncertainty. This concerns uncertainties which cannot be adequately 
depicted in terms of chances or probabilities, but which can only be specified in 
terms of (a range of) possible outcomes. In dose assessment this source of 
uncertainty includes the need to make assumptions about the habits of animals in 
the food chain and human behaviour. 
 
• Ignorance. Although not a manageable category of uncertainty, the recognition 
of ignorance allows for the fact that "we don't know what we don't know" and that there 
are inherent limitations to the reduction of uncertainty. 
 
Type III modeling error: NEGLECT of processes because a lack of understanding of how the 
system works  
K. Beven Hydrol Earth Syst Sci 11 (2007) 460 
 
 
 



 
 
 
 
 
 
Standard for determining acceptability of model uncertainty 
 
12 There are no clear international standards to determine the acceptability of models. Such 
acceptability is usually defined by user acceptance criteria and demonstrated by model 
validation. Although, in some specialised contexts, there is a movement toward the 
development of more physically based models, radiological impact assessment models 
have relied, and will continue substantially to rely, on large databases of empirical 
parameter values or distributions. Thus, many of the data that might be used for validation 
are already incorporated in the underlying databases. The issue of how new datasets 
could be generated for validation purposes and the identification of appropriate techniques 
for carrying out such validation studies are not addressed in this paper, but are potential 



topics for future consideration by the NDAWG. 
 
13 In general, the adequacy of models can only be assessed in relation to how well they 
predict environmental measurements. The National Dose Assessment Working Group 
considers that models which are generally within a factor of 3 of environmental 
measurements may be regarded as adequate for prospective radiological assessments. 
Models which differ from environmental measurements by a factor of more than 10 may be 
considered as inadequate. 
 
Definition of criteria for significance of uncertainty 
 
14 The NDAWG modelling sub-group defined the following scoring criteria for determining 
the significance of uncertainty: 
• Uncertainty – Score of 1 if less than about factor of 3, score of 3 if greater than about a 
factor of 10, otherwise a score of 2. 
 
• Dose – Score of 1 if dose from any permitted radioactive substance release is <20 
µSv/y, score of 3 if dose is >100 µSv/y. 
 
15 The dose score is intended to be a measure of the highest prospective critical group dose 
which may be received from discharges of a radionuclide at its limit specified in any RSA 
93 authorisation in the UK. 
 
16 These two scores were multiplied together to give a combined score and given the 
following priority rating (see Figure ): 
• High priority (red) – score of 6 or 9. 
• Medium priority (yellow) – score of 4 or 3 (where uncertainty score = 3 and dose score 
= 1) 
• Low priority (white) – score of 1, 2 or 3 (where uncertainty score = 1 and dose score = 
3 – low uncertainty so little need to improve modelling despite high dose) 
 

 
 
 
 
Releases to air 



• Develop models for transfer of organically bound tritium (OBT) from air/soil to food 
Releases to freshwater 
Examine transfer of OBT and phosphorus isotopes to freshwater fish (may need to 
consider chemical speciation). 
Releases to estuary / coastal waters 
Examine concentration factors for transfer to fish for OBT and Eu-154 
Releases to sewer 
Continue and broaden research on transfer of radionuclides in sludge to soil and on 
into the foodchain, in particular for H-3 and C-14 
 
 
Releases to air – Short Term 
Transfer to food score is 9 
General  Time dependence leads to more uncertainty than for continuous releases.  
Seasonality is a major factor. 
Effect of agricultural practices and season of the year important for short term releases. 
. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 
WHAT TO DO WITH ACCIDENTAL TRITIUM 
 
Tritium is a life element, his transfer into the biosphere is subject to  
environmental conditions, season and time of the day, as well as genotype, 
adaptation to soil and climate etc. LARGE NATURAL VARIABILITY 

To test the full model, we must have a data base of past accidents with 
coherent description. 

FORTUNATELY there were few accidental emissions of tritium and 
UNFORTUNATELY there are not well documented for our purposes 

(See Ch Murphy for SRS, R Peterson for LLNL) 

 
 
SPECIFIC CAUSES OF UNCERTAINTY 

A. MISSING COMMUNICATION 
1. EXPERIMENTS AND OBT MODELING IN AECL 

UNDISCLOSED 
2. CARDIFF CASE: EXPERIMENTS ORDERED BY GE 

HEALTHCARE UNDISCLOSED (BUT 
ENVIRONMENTAL AGENCY AND FSA REPORT 
AVAILABLE ON REQUEST) 

3. MANY REPORTS, PHD THESIS DIFFICULT TO 
ACCESS, OR DELAY FOR UNRESTRICTED 

 



B. INCOMPLETE DOCUMENTATION –IGNORING PAST 
ACHIEVMENTS (BIOMOVS, EMRAS I, SELECTIVE 
UPTAKE OF DISSOLVED ORGANIC TRITIUM) 

C. NO COMMON KNOWLEDGE DATA BASE DUE TO 
COPYRIGHT RESTRICTION 

D. MISSING APPRECIATION – S STRACK CASE- LOST 
INFORMATION T IN WHEAT 

E. LIMITS IN ALLOCATION OF TIME AND BUDGET 
F. MISSING DEDICATION- ONLY A JOB 
G. MISSING PEER REVIEW 
H. INSUFFICIENT PARAMETER UNCERTAINTY 

 
For a single process model (UFOTRI) and a single scenario (BIOMOVS) a 
parameter uncertainty was done in the past  
Consider parameter  range and probability distribution 
(uniform, trianglular, norma, lognormal, etc) 
Considers correlation between parameters 
Apply LATIN HYPERCUBE SAMPLING and Standardized rank regression 
coefficients (see IAEA SS 100) 
 
 
 

I. NEED OF INTERDISCIPLINARY APPROACH 
We must develop submodels using basic research from life science, 
internationally agreed, plus a minimum of working hypothesis (justifiable). We 
must test the model with available tritium data 
Collaboration with national research in agriculture and animal husbandry.  

 
ANIMALS- Transfer factors- few nutrition and some H metabolism knowledge. Tested . 
Accepted by IAEA 
ANIMALS, Dynamic 
EXAMPLE MAGENTC 
Use recent results from animal nutrition, metabolism and physiology 
Make a single working hypothesis- with justification 
Justification asked for expert judgment 
Test the model with all available experimental data 
P/O<3 
ACCEPTED and used for cases without experimental data 
Next step, use the model and simplify without significant loss of predictive power  
 
 
 J. LUMPED PARAMETERS and steady state approach 
PLANTS 
 
CTFWT=C∞(1-e-k t) 
k is the rate constant for HTO uptake (h-1) 



K has a large variability- see Cecile Boyer review and new 
experimental results on lettuce 
 
simplification of 
 
 
 
 
 
 
Exchange velocity=1/(Ra+Rb+Rc) 

• Aerodynamic resistance Ra, Boundary layer resistance Rb, Total surface 
resistance Rc can be split up into canopy and ground related resistance 
For HTO uptake to leaves only canopy resistance 

 
Ra, Rb - affected by wind speed, crop   
             height, leaf size, and  
             atmospheric stability; 
           - decrease with increasing wind 
             speed and crop height 

 
CAN BE HANDELED WITH TODAY KNOWLEDGE (BIOMETOROLOGY, GIS, 
Remote Sensing) NEED COOPERATION  
            

K Avoid calibration with a single experiment or a limited number of experiments 

            HTO
OBT C

dt
dC υ=  

where 
_ COBT is the OBT concentration in the plant leaves (Bq L_1 of combustion water), 
_ CHTO is the tissue free-water tritium concentration (Bq L_1), 
_ ν is the conversion rate from HTO to OBT (% h_1),  NOT a plant dependent constant. NOT A PARAMETER 
 
  

L. INCOMPLETE USE OF RECENT ADVANCES IN SOIL WATER-PLANT MODELING 
                  Actual evaporation and transpiration 
                  Rooting depth and distribution 
                  Profile of HTO in soil 
                  Water stress 
                  Macropores 
                 OPTIMISATION OF NUMERICAL GRID 
                REMAIN THE VARIABILITY OF SOIL PEDOFUNCTION (must be site specific but still 
                variability in hydraulic conductivity) 
                EFFCTS ON FINAL UNCERTAINTY MUST BE EXERCISED 
                (LOT OF MODELS are available, including contaminants, must be adapted) 
 
 M. OBT (NE) définition, annalitical technique, bioavailability 
  

N. Incomplete use of plant physiology and growth processes 
              (OBT formation, loss by respiration, partition to edible plant parts) 
                     >> photosynthesis, select a practical model 
  >>  use appropriate plant growth model 
 
 O. INCOMPLETE USE OF Carbon knowledge (common pathways) 
                        Growth-   tested with FACE data 
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                        Translocation, respiration , etc 
 
 
 
 
 
MORE STEPS 
 

1. Analyze model simplification without loss of predictive power, using sensitivity and 
uncertainty approach 

2. run on a full year of meteorological data to observe consistency 
3. test on different soils and climate 
4. test with available data 
 
PEER REVIEW 
 
 
For operational application add land use, population distribution, production and habits 
Consider an improved atmospheric model, site adapted 

          
 
 
 
 
 
 
 


