

energie atomique - energies alternative

Washout rate

Luc Patryl - Dan Galeriu

September 6, 2010

			~ ·	
Luc Patr	v -	Dan I	(_{aal}	eru

< ≧ ▶ < ≧ ▶ ≧ ク Q (~ September 6, 2010 1 / 20

・ロト ・聞ト ・ヨト ・ヨト

SOMMAIRE

CLASSIFICATION OF THE PRECIPITIONS AND WASHOUT RATE

4 ALGORITHM OF RESEARCH FOR THE BEST RATE

3

SOMMAIRE

Luc Patr	vl - Dan	Galeriu

< 言 > < 言 > 三 September 6, 2010 3 / 20

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Objectives: in 2010 january, the workgroup WG7 decided :

energie atomique - energies alternatives

- to provide a simple and robust tritium model;
- to define the washout rate which has to be used by models according to several representatives rains;
- number of experimental data allowing to determine a washout rate is very low;
- leads to theoretical models often based on too few experimental data

3

Objectives: in 2010 january, the workgroup WG7 decided :

energie atomique - energies alternatives

- to provide a simple and robust tritium model;
- to define the washout rate which has to be used by models according to several representatives rains;
- number of experimental data allowing to determine a washout rate is very low;
- leads to theoretical models often based on too few experimental data;

э

Objectives: in 2010 january, the workgroup WG7 decided :

energie atomique - energies alternatives

- to provide a simple and robust tritium model;
- to define the washout rate which has to be used by models according to several representatives rains;
- number of experimental data allowing to determine a washout rate is very low;
- leads to theoretical models often based on too few experimental data

Objectives: in 2010 january, the workgroup WG7 decided :

energie atomique - energies alternatives

- to provide a simple and robust tritium model;
- to define the washout rate which has to be used by models according to several representatives rains;
- number of experimental data allowing to determine a washout rate is very low;
- leads to theoretical models often based on too few experimental data;

SOMMAIRE

Luc Pote	/ 100	D OF
I III E ALIN	/ - ///	VIAIEL III
Euc i uti		Gaileria

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Washout rate

According to the bibliography review, the washout rate depends of several parameters:

Release characteristics: height of release, distance from release;

Precipitation characteristics: type of precipitation (rain, snow, fog, hail, sleet), intensity of precipitation, drops size distribution, drops diameter, drops velocity, duration of crossing of the plume by drops;

Atmospheric characteristics: atmospheric pressure, temperature, humidity, dispersion.

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

energie atomique - energies alternative

Washout rate

According to the bibliography review, the washout rate depends of several parameters: Release characteristics: height of release, distance from release; Precipitation characteristics: type of precipitation (rain, snow, fog, hail, sleet), intensity of precipitation, drops size distribution, drops diameter, drops velocity, duration of crossing of the plume by drops; Atmospheric characteristics: atmospheric pressure, temperature, humidity, dispersion.

3

Washout rate

According to the bibliography review, the washout rate depends of several parameters:

energie atomique - energies alternatives

Release characteristics: height of release, distance from release;

Precipitation characteristics: type of precipitation (rain, snow, fog, hail, sleet), intensity of precipitation, drops size distribution, drops diameter, drops velocity, duration of crossing of the plume by drops;

Atmospheric characteristics: atmospheric pressure, temperature, humidity, dispersion.

3

Bibliography review

According to the bibliography review, the washout rate ranges:

energie atomique - energies alternatives

• from 10^{-5} to 10^{-3} s⁻¹;

- light rain: 10^{-4} and heavy rain: 10^{-3} s⁻¹;
- snow: 2.10^{-5} s^{-1} ;
- drizzle-fog: no data, no washout.

Luc Patr	vl - D	an Ga	leriu

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Bibliography review

According to the bibliography review, the washout rate ranges:

energie atomique - energies alternatives

• from 10^{-5} to 10^{-3} s⁻¹:

- light rain: 10^{-4} and heavy rain: 10^{-3} s⁻¹;
- snow: 2.10^{-5} s^{-1} ;
- drizzle-fog: no data, no washout.

I DI		<u><u> </u></u>	
LUC Patry	/i - i Jan	Galeriu	

・ロト ・四ト ・ヨト ・ヨト

Bibliography review

According to the bibliography review, the washout rate ranges:

energie atomique - energies alternotives

● from 10⁻⁵ to 10⁻³ s⁻¹;

- light rain: 10^{-4} and heavy rain: 10^{-3} s⁻¹;
- snow: 2.10⁻⁵ s⁻¹;
- drizzle-fog: no data, no washout.

Luc Patr	vl - D	an Ga	leriu

イロト イポト イヨト イヨト 二日

According to the bibliography review, the washout rate ranges:

energie atomique - energies alternatives

- from 10^{-5} to 10^{-3} s⁻¹;
- light rain: 10^{-4} and heavy rain: 10^{-3} s⁻¹;
- snow: 2.10⁻⁵ s⁻¹;
- drizzle-fog: no data, no washout.

Luc Patry	/ -	Dan	Gal	leriu

・ロト ・四ト ・ヨト ・ヨト

SOMMAIRE

3

Classification of the precipitations

energie atomique - energies alternatives

Some type of liquid (rain, sleet), solide (hail) or mixed precipitations lead to a wet deposition. According to the American Meteorology Society:

- drizzle-fog: drops are generally less than 0.5 mm in diameter, are very much more numerous;
- light rain: the rate of fall varying between a trace and 2.5 mm.h⁻¹, the maximum rate of fall being no more than 0.25 mm in six minutes;
- <u>moderate rain</u>: from 2.6 to 7.6 mm.h⁻¹, the maximum rate of fall being no more than 0.76 cm in six minutes;
- heavy rain: over 7.6 mm.h⁻¹ or more than 0.76 mm in six minutes,
- snow: precipitation in the form of crystalline water ice of all size.

Classification of the precipitations

energie atomique - energies alternatives

Some type of liquid (rain, sleet), solide (hail) or mixed precipitations lead to a wet deposition. According to the American Meteorology Society:

- drizzle-fog: drops are generally less than 0.5 mm in diameter, are very much more numerous;
- light rain: the rate of fall varying between a trace and 2.5 mm.h⁻¹, the maximum rate of fall being no more than 0.25 mm in six minutes;
- <u>moderate rain</u>: from 2.6 to 7.6 mm.h⁻¹, the maximum rate of fall being no more than 0.76 cm in six minutes;
- heavy rain: over 7.6 mm.h⁻¹ or more than 0.76 mm in six minutes;
- snow: precipitation in the form of crystalline water ice of all size.

energie atomique - energies alternotives

Some type of liquid (rain, sleet), solide (hail) or mixed precipitations lead to a wet deposition. According to the American Meteorology Society:

- drizzle-fog: drops are generally less than 0.5 mm in diameter, are very much more numerous;
- light rain: the rate of fall varying between a trace and 2.5 mm.h⁻¹, the maximum rate of fall being no more than 0.25 mm in six minutes;
- <u>moderate rain</u>: from 2.6 to 7.6 mm.h⁻¹, the maximum rate of fall being no more than 0.76 cm in six minutes;
- heavy rain: over 7.6 mm.h⁻¹ or more than 0.76 mm in six minutes;
- <u>snow</u>: precipitation in the form of crystalline water ice of all size.

energie atomique - energies alternotives

Some type of liquid (rain, sleet), solide (hail) or mixed precipitations lead to a wet deposition. According to the American Meteorology Society:

- drizzle-fog: drops are generally less than 0.5 mm in diameter, are very much more numerous;
- light rain: the rate of fall varying between a trace and 2.5 mm.h⁻¹, the maximum rate of fall being no more than 0.25 mm in six minutes;
- <u>moderate rain</u>: from 2.6 to 7.6 mm.h⁻¹, the maximum rate of fall being no more than 0.76 cm in six minutes;
- heavy rain: over 7.6 mm. h^{-1} or more than 0.76 mm in six minutes;
- snow: precipitation in the form of crystalline water ice of all size.

energie atomique - energies alternatives

Some type of liquid (rain, sleet), solide (hail) or mixed precipitations lead to a wet deposition. According to the American Meteorology Society:

- drizzle-fog: drops are generally less than 0.5 mm in diameter, are very much more numerous;
- light rain: the rate of fall varying between a trace and 2.5 mm.h⁻¹, the maximum rate of fall being no more than 0.25 mm in six minutes;
- <u>moderate rain</u>: from 2.6 to 7.6 mm.h⁻¹, the maximum rate of fall being no more than 0.76 cm in six minutes;
- heavy rain: over 7.6 mm. h^{-1} or more than 0.76 mm in six minutes;
- <u>snow</u>: precipitation in the form of crystalline water ice of all size.

Proposed washout rate according to the type of precipitation for using in the simple and robust HTO models.

energie atomique - energies alternatives

Duccinitation	l_{m}	M/a = h = u + (a = 1)
Precipitation	Intensity (mm.n -)	vvasnout (s -)
drizzle-fog	all	no data > rain ?
light rain	\leq 2.5 mm.h $^{-1}$	$2.5 imes10^{-4}$
moderate rain	$2.6-7.6 \text{ mm.h}^{-1}$	$3.6 imes10^{-4}$
heavy rain	$> 7.6 \text{ mm.h}^{-1}$	$1.0 imes10^{-3}$?
snow	all	$2.2 imes10^{-6}$

LIC Pote	12.0		0.5111
LIC FAILY	2.411	viai	

3

SOMMAIRE

3

Luc Patry	/l - Dan	Galeriu

Luc Patr	vl - Dan	Galeriu

Luc Date	d Dan	Coloriu
Luc rain	/i - Dall	Galeriu

1 D.		D	
	- IVI-	Lan	

Luc Patry	/I - Dar	Galeriu
Luc I ati y	n - Dai	Galeriu

Hypothesis

The algoritm of research for washout rate is based on the following hypothesis:


```
energie atomique - energies alternatives
```

 washout rate is specific for a type of precipitation: Only the data corresponding to the studied precipitation can be taken into account in the research;

- the <u>relative influence</u> of the parameteres is <u>not the same</u> for each washout rate. The weight assigned to each of these parameters must be defined separately of each washout rate;
- the database can be completed and the weights of each of the parameters will be calculated dynamically to be the most adapted to the available data.

energie atomique - energies alternatives

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

 1. For every group (type, distance, height, temperature, pressure, diameter, velocity) present in the base, we list the available pairs (intensity, washout rate);

LUC Pote			
LUC FALL	vi - 17a	n vialeri	

э

energie atomique - energies alternatives

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

 2. The group (type, distance, height, temperature, pressure, diameter, velocity) is taken into account only if at least two experimental values are available;

Luc Pat	ryl -	Dan	Gale	eriu

э

energie atomique - energies alternatives

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

 3. Two ranges are obtained: the range of intensity and the range of washout;

Luc Pote/	100	
LUC FALIVI-	1 Jan	valeriu

э

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

• 4. the standard deviation of each of these ranges are calculated:

$$\begin{array}{lll} \sigma^{i}_{T,d,h,t,p,di,v} & : & \mbox{Intensity standard deviation} \\ \sigma^{\lambda}_{T,d,h,t,p,di,v} & : & \mbox{Washout rate standard deviation} \end{array}$$

uc Patrv	1 - D	an G	aleriu

э

energie atomique - energies alternatives

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

• 5. For each group, the weight of the intensity is obtained with the following formula:

$$P_{T,d,h,t,p,d,}^{i} = \frac{\sigma_{T,d,h,t,p,di,v}^{i}}{\sigma_{T,d,h,t,p,di,v}^{\lambda}}$$

Luc	Patrv	- 1	Dan	Gal	eriu
	i atiy			Gui	

э

œ

energie atomique - energies alternatives

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

• 6. Then, the middleweight of the intensity are calculated for this type of precipitation:

$$P_{T}^{i} = \frac{1}{Nb((d,h,t,p,di,v)_{T})} \sum_{(d,h,t,p,di,v)} P_{T,d,h,t,p,di,v}^{i}$$

where $Nb((d, h, t, p, di, v)_T)$ is the number of group for which we were able to calculate the standard deviation.

э

energie atomique - energies alternatives

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

• 7. If this number is invalid (for example if among the available experimental data, no one was measured by only varying the intensity), then the value to 1 is fixed arbitrarily ;

LUC Pote			
LUC FALL	vi - 17a	n vialeri	

3

For example, for distance, height, temperature, pressure, diameter, velocity, we screen the available washout rate values to study their influence:

• 8. We make the same operation to calculate :

- P_T^d E_T^d : Weight of the distance for the type of precipitation : Average of the temperature the type of precipitation

Р<u>ћ</u> Е<u></u>

- Weight of the height or release for the type of precipitation
- : Average of the height or release for the type of precipitation

and so on for all parameters.

Luc Patr	v -	l)an	(-2)	eruu
	yı.	Duit	Gui	

Method to choose the best washout rate

The algoritm of research for washout rate is based on the following hypothesis:

The distance between the conditions of simulation and available experimental data is calculated with the relation:

$$\frac{d_T(i_0, d_0, h_0, t_0, p_0, di_0, v_0, i, d, h, t, p, di, v) =}{\sqrt{P_T^i \times (i - i_o)^2 + P_T^d \times (d - d_o)^2 + P_T^h \times (h - h_o)^2 + P_T^t \times (t - t_o)^2 + P_T^p \times (p - p_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^v \times (v - v_o)^2 + P_T^{di} \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^v \times (v - v_o$$

3

The algoritm of research for washout rate is based on the following hypothesis:

The distance between the conditions of simulation and available experimental data is calculated with the relation:

$$\frac{d_T(i_0, d_0, h_0, t_0, p_0, di_0, v_0, i, d, h, t, p, di, v) =}{\sqrt{P_T^i \times (i - i_0)^2 + P_T^d \times (d - d_o)^2 + P_T^h \times (h - h_o)^2 + P_T^t \times (t - t_o)^2 + P_T^p \times (p - p_o)^2 + P_T^d \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^d \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^d \times (di - di_o)^2 + P_T^v \times (v - v_o)^2 + P_T^d \times (di - di_o)^2 + P_T^d \times (di - di_o)^2 + P_T^d \times (u - v_o)^2 + P_T^d \times (di - di_o)^2 + P_T^d \times (u - v_o)^2 + P_T^d$$

Research the lambda coefficient:

The value of Lambda used in the computation corresponds to the shorter distance described above.

	September	6,	2010
--	-----------	----	------

イロト イポト イヨト イヨト

3

SOMMAIRE

Luc Patryl - Dan Galeriu

September 6, 2010 17 / 20

3

CONCLUSION

Washout rate.

energie atomique - energies alternatives

- need more experiments with details;
- database has to be completed ;
- washout rates proposed according to rain intensity have to be confirmed
- algoritm allow to choice the best washout for specific conditions

	100	
allyi -	12dill	Maleriu

Washout rate database uses the international unit. The data are available in the SQLite table defined by:

:	Identifier of the recording		Integer
:	Distance from Relase to observed point	m	Double
:	Height of Release	m	Double
:	Temperature of air	К	Double
:	Atmospheric pressure	Pa	Double
:	Precipitation diameter	m	Double
:	Precipitation velocity	$m.s^{-1}$	Double
:	Precipitation intensity	$m.s^{-1}$	Double
:	Type of precipitation (rain, snow,fog)		String
:	Typical precipitation		String
:	Washout rate	s^{-1}	Double
:	Bibliography references		String
		Identifier of the recording Distance from Relase to observed point Height of Release Temperature of air Atmospheric pressure Precipitation diameter Precipitation velocity Precipitation intensity Type of precipitation Washout rate Bibliography references	

Luc Patryl	- D)an I	Gal	eriu
------------	-----	-------	-----	------

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Washout rate database

Index	Washout	Dista	nce ^a Height ^b	Temp.	Atm.	Diameter	Velocity	Intensity	Туре	Re
				of air	pres-					
					sure					
energie afornique - energies al	terratives S	m	m	K	Pa	m	m.s ⁻¹	mm.h ⁻¹		
1	7.30×10^{-5}							2	rain	[?]
2	4.60×10^{-4}							2	rain	[?]
3	3.60×10^{-4}							4	rain	[?]
4	2.00×10^{-4}							1	rain	[?]
5	1.00×10^{-4}							1	rain	[?]
6	1.00×10^{-3}							25	rain	[?]
7	1.41×10^{-4}					2.00×10^{-4}			rain	[?]
8	5.64×10^{-5}					5.00×10^{-4}			rain	[?]
9	2.82×10^{-5}					1.00×10^{-3}			rain	[?]
10	2.00×10^{-5}					1.40×10^{-3}			rain	[?]
11	1.66×10^{-5}					1.70×10^{-3}			rain	[?]
12	1.34×10^{-5}					2.10×10^{-3}			rain	[?]
13	2.10×10^{-5}							1.1	snow	[?]
14	2.60×10^{-5}							1	snow	[?]
15	1.75×10^{-5}							1		Pa

^aDistance from release ^bHeight of release

Luc Patryl - Dan Galeriu

September 6, 2010

・ロト ・四ト ・ヨト ・ヨト

20 / 20

- 2