Incorporation of Tritium Transport Processes into Atmosphere-soil-vegetation Model: SOLVEG

~OBT dynamics in plants using the SOLVEG code after an accidental tritium release~

Haruyasu Nagai, Masakazu Ota Research Group for Environmental Science, Japan Atomic Energy Agency

Outline of Study

Objectives

 Development of sophisticated land surface model including radionuclide (Tritium) transport processes
 Understand and predict behavior of radionuclide at land-surface by numerical experiment

Model development

> <u>\$72201</u>-117 <

□ Step 1: Heat and water exchange processes
 □ Step 2: Canopy radiation and stomatal resistance → SOLVEG
 □ Step 3: CO₂ exchange processes → SOLVEG2

□ EMRAS-II: Radionuclide transport processes (THO, OBT)

Physical processes

Physical processes are calculated at each layer of vertical multi-layer model Bold: main var., <u>Underlined: processes</u>, <u>Red: heat/rad.</u>, <u>Blue: water</u>, <u>Green: CO₂</u>

CAED SPEEN-NP

		Land surface model SOLVE	G2 4/18
		Basic equations (1): heat, wa	ter, momentum
<u>Atmosphere</u> Bo	Diffusion: undary condition	$ \frac{\partial \phi}{\partial t} = \frac{\partial}{\partial z} K_z \frac{\partial \phi}{\partial z} + F_{\phi} $ Source term	$\phi = u, v, \theta, q_a, e, e\lambda, w_f$
<u>Soil</u>	Heat:	$\frac{\partial T_s}{\partial t} = \frac{\partial}{\partial z} K_T \frac{\partial T_s}{\partial z} + \frac{H_b}{C_s \rho_s} - \frac{C_w E_w}{C_s \rho_s} \frac{\partial T_s}{\partial z}$	Evaporation/ condensation
	Liquid water:	$\frac{\partial \eta_{w}}{\partial t} = -\frac{1}{\rho_{w}} \left(\frac{\partial E_{w}}{\partial z} + E_{t} + E_{b} \right)$	$H_b = -lE_b$
	Water vapor:	$\frac{\partial \left[(\eta_{ws} - \eta_{w}) q_{s} \right]}{\partial t} = \frac{\partial}{\partial z} D_{w} f_{a}(\eta_{w}) \frac{\partial q_{s}}{\partial z} + \frac{E_{b}}{\rho}$	Transpiration
Vegetation	Heat budget:	$R_c = H_c + lE_c + H_p$	$E_c = E_d + E_s$
	Leaf water:	$\frac{dw_d}{dt} = E_{\text{int}} - E_d + E_{cap} - P_d$	
	Water flux:	$\frac{dP_r}{dz} = a(E_{\rm int} - P_d) + E_{pr} - E_{col}$	
	Net ra	diation	
Radiation	Short wave: D	ownward and upward transfer	
(Next slide)	tt slide) Direct (visible + near-infrared) + Diffuse (visible + near-infrared)		e + near-infrared)
	Long wave: D	ownward and upward transfer	

Image: Specific product of the second sec

Radiation scheme (coefficients based on Verstraete 1987, 1988)

Leaf projection cf.: F_{rs} Forward scattering cf.: f_{sf} Back scattering cf.: f_{sb} Depend on leaf area densityLepend on leaf surface angle

2 options

Stomatal resistance (Jarvis scheme): BATS (Dickinson et al. 1993)

$$r_{s} = r_{s,\min} f_{r} f_{s}^{-1} f_{m}^{-1} f_{t}^{-1}$$

 $r_{s,min} \Rightarrow$ measured parameter

 f_r, f_s, f_m, f_t : Functions of PAR, soil water, humidity, temperature

Basic equations (4): soil CO₂

Soil CO₂ conservation: Simunek and Suarez (1993)

$$\frac{\partial}{\partial t} V_E c_a = \frac{\partial}{\partial z} D_E \frac{\partial c_a}{\partial z} - \frac{\partial}{\partial z} E_E^* c_a - E_t^* K_H RT c_a + S$$

- Volume: $V_E = (\eta_{ws} \eta_w) + K_H RT \eta_w$, Diffusion: $D_E = (\eta_{ws} - \eta_w) D_a + K_H RT \eta_w D_w$, Advection: $E_E^* = E_a^* + K_H RT E_w^*$,
- ⇒ Treatment of CO₂ in gas and aqueous phase together by Henry's Law: $c_w = K_H RT c_a$
- c_a CO₂ conc. in soil air
- η_w Volumetric water content
- E_t^* Root uptake (transpiration)

$$S \qquad \text{CO}_2 \text{ source term } (= \text{ soil: } S_s + \text{ root: } S_r)$$
$$S_s = S_{s0} f_s(z) f_s(\eta_w) f_s(T) f_s(c_a) f_s(t)$$
$$S_r = S_{r0} f_r(z) f_r(\eta_w) f_r(T) f_r(c_a) f_r(t)$$

Water and CO₂ fluxes at grassland

8/18

 Good performance for water and CO₂ exchanges at grassland (AmeriFlux data) Diurnal variation and seasonal change are well reproduced.
 → It can be applied for detailed simulation of ³H and ¹⁴C transport.

Incorporation of HTO transport processes

Concept

(AEA) SYEEN - NY

- Process based HTO transport model to simulate dynamic behavior of HTO in air-soil-plant system
- Explicit calculation of HTO transport in a similar way as water and vapor transport

Model development

□ Step 1: transport in the atmosphere and bare soil (no decay)

- In-soil transport by Yamazawa (2001) applied for BIOMASS Theme 3-F (rise of HTO from contaminated groundwater)
- Atmospheric transport for HTO vapor (1-D diffusion eq.)
- Test calculation using met. data of AmeriFlux (previous slide)

□ Step 2: inclusion of plant uptake processes

□ Step 3: OBT formation and translocation

In-soil HTO transport processes

HTO budget:	$\frac{\partial}{\partial t}\eta_{v}\chi_{v} = E_{stom} + E_{root} - E_{phot} + E_{res}$		
Stomata uptake:	$E_{stom} = \frac{1}{r_a + r_s} \left\{ \chi_a - q_{sat} (T_c) \frac{\rho_a}{\rho_w} \chi_v \right\}$		
Root uptake:	$E_{root} = \int_{0}^{z_{btm}} E_{r}(z_{s})f_{root}(z_{s}, z)dz_{s}$		
OBT formation:	$E_{phot} = \frac{\chi_v}{\rho_w} m_w A_g \text{(proportional to CO_2 assimilation rate)}$		
OBT decomposit	ion: $E_{res} = S_{int} m_{glu} \frac{1}{6} R_d$ (proportional to respiration rate)		
χ_v , χ_a	HTO conc. in leaf water (Bq/m ³ -water) and air (Bq/m ³ -air)		
η_{v}	Leaf water content in unit leaf area (m^3/m^2)		
r_a , r_s	Resistances (s/m) of leaf boundary layer and stomata		
$q_{sat}(T_c)$	Saturated specific humidity (kg/kg) at leaf temperature (T_c)		
$ ho_a, ho_w$	Density of air and water (kg/m ³)		
E_r	Root uptake rate of HTO (Bq/m ³ /s)		
$f_{root}(z_s,z)$	Distribution function of root uptake water		
m_w, m_{glu}	Weight of 1 mol water and glucose (kg/mol)		
A_g, R_d	Gross CO_2 assimilation rate and respiration rate (mol- $CO_2/m^2/s$)		
S_{int}	OBT amount in intermediate pool (Bq/kg)		

TFWT concentration Cal. & Obs.

OBT amount in leaf Cal. & Obs.

(1) OBT inventory in each pool (MBq m^{-2}) **JBT** Inventory 15 Intermediate (MBq m⁻²) 10 Structural Concentration of the second 5 starch () sucrose (2) OBT amount (MBq kg^{-1}) 1.0[Obs day **OBT** amount (MBq kg⁻¹) - z = 0.85 mtop night **middle** \rightarrow z = 0.6 m day -z = 0.4 mnight 0.5 low Exposure 12 36 48 60 84 96 108 0 24 72 120 Time from 1982 7/1 0:00 (h) OBT : Cal. / Obs. 9–13 h period **0.6** (n = 8)13–120 h period **1.4** (n = 30)

Fate of OBT generated in leaf

Incorporation of HTO transport into SOLVEG

- Process based HTO transport model to simulate dynamic behavior of HTO in air-soil-plant system
- Explicit calculation of HTO transport in a similar way as water and vapor transport
- □ Step 1: transport in the atmosphere and bare soil (no decay)
- □ Step 2: inclusion of plant uptake processes
- □ Step 3: OBT formation and translocation
- Test using experimental data at Cadarache (Guenot and Belot 1984)
 Calculated results seem to be reasonable.
- → Submitted to JER:
 - Masakazu Ota and Haruyasu Nagai, "Development and validation of a dynamical atmosphere–vegetation–soil HTO transport and OBT formation model"