Modelling optimisation of HTO transfer from soil to plants Dan Galeriu, Anca Melintescu IFIN-HH ROMANIA PREDRAFT

Owerview

- 1. Hypothetical scenario conclude that soil pathway is less important than air but night and rain conditions must be elucidated. It is always true?
- 2. We are interested in HTO and OBT in edible plat part and NOT detailed soil tritium
- 3. root dynamics
- 4. potential and actual transpiration
- 5. water uptake from soil layers
- 6. HTO profile in soil
- 7. contamination of leaf water from soil

Plants of interest include pasture, lucerne, rice, wheat, corn, vegetables (leafy and root vegetables), tomatoes, potatoes, apples and citrus fruits, grapes + sunflower and sugar beet

Pasture have roots until 30 cm- permanent pasture Leafy vegetables also 30 cm but growing from 10. We are interested mostly on few weeks before harvest

Other plants can have deeper roots

Plant characteristics **AQUACROP**

Maize

1.4 Development of root zone

Zn Minimum effective rooting depth (m) Management (3) 0.30

Zx Maximum effective rooting depth (m) Management (3) Up to 2.80

Shape factor describing root zone expansion Conservative (1) 1.3

Time from sowing to maximum rooting depth (growing degree day) Cultivar (4) Environment (3)

Function of root expansion rate:

1.5 - 2.5 cm/day

Data base for:

Maize potato rice, soybean sugar beet sunflower tomato wheat

SWAP & WOFOST

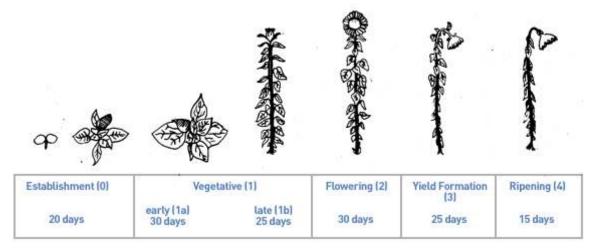
Faba bean

*

RDI = 10.00! Initial rooting depth, [0..1000 cm, R]

RRI = 0.80! Maximum daily increase in rooting depth,

[0..100 cm/d, R]


RDC = 100.00! Maximum rooting depth crop/cultivar, [0..1000 cm, R]

*

Data base for

Faba bean potato sugar beet sun flower winter wheat grain maize spring barley soy bean winter oilseed rape grass

SUNFLOWER

ROOTING ZONE MUST EXTEND MORE THAT 1.5 m!!!

WE NEED apples and citrus fruits, grapes

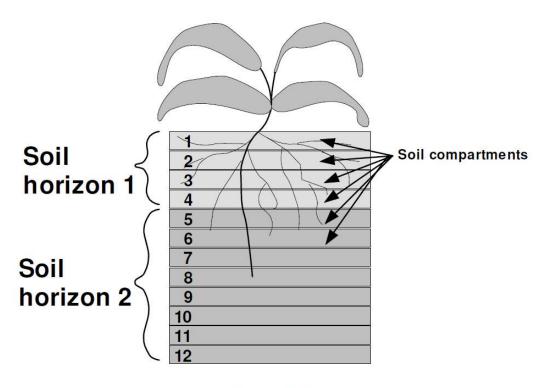
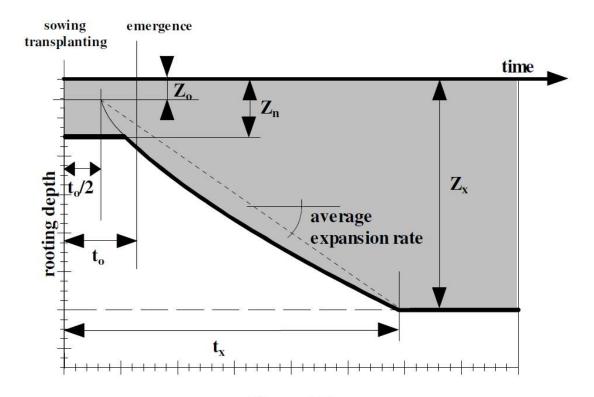



Figure 3.6b Soil horizons and soil compartments

 $\label{eq:figure 3.5a} Figure 3.5a \\ Development of the effective rooting depth (shaded area) \\ from sowing till the maximum effective rooting depth (Z_x) is reached$

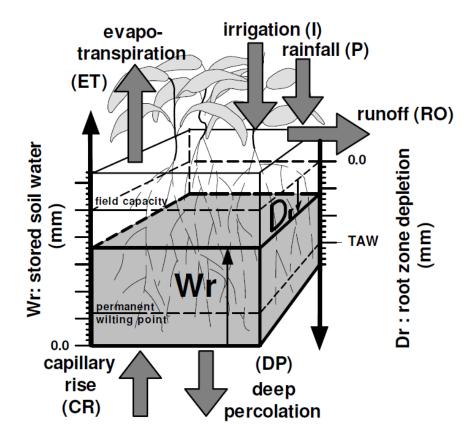


Figure 3.1a
The root zone as a reservoir

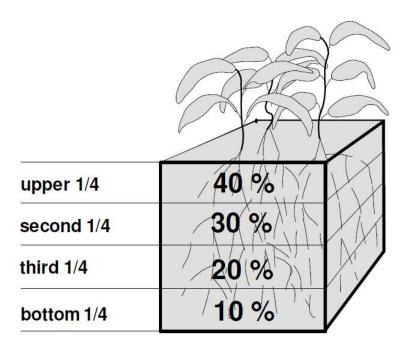


Figure 3.8k
Default extraction pattern in the root zone

POTENTIAL AND ACTUAL TRANSPIRATION

Potential

Comparison of the increasing complexity of the models in terms of number of parameters required

Parameter	Sym bol	Units	PT	MB	Penman	PM	SW
Rate of change of vapor pressure with temperature	Δ	kPa K ^{−1}	100		"	1	1
Total available energy	A	$W m^{-2}$	1		100	100	-
Psychrometric constant	γ	kPa K ⁻¹	1	100	1	100	-
Air temperature	$T_{\mathbf{a}}$	°C	1	100	100	100	1
Specific heat at constant pressure	$c_{\mathbf{p}}$	$J \text{ kg}^{-1} \text{ K}^{-1}$		100		100	1
Air density	ρ	kg m ⁻³		100	100	100	-
Vapor pressure deficit	D	kPa		100	100	100	1
Bulk stomatal resistance of the canopy	r_{cs}	s m ⁻¹		100		100	1
Wind speed	u	$m s^{-1}$			100	1	-
Aerodynamic resistance above the canopy	r_{aa}	$s m^{-1}$				100	-
Bulk boundary layer resistance of the vegetation	r _{ca}	s m ⁻¹					1
Aerodynamic resistance for substrate and canopy	r ₈₈	$s m^{-1}$					1
Surface resistance of the substrate	r ₈₈	$\rm s~m^{-1}$					1
Available soil energy	A_8	$W m^{-2}$					1

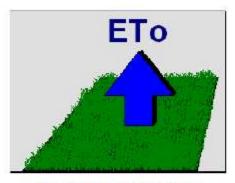
PT, Priestley-Taylor, MB, McNaughton-Black; PM, Penman-Monteith; SW, Shuttleworth-Wallace.

The Penman-Monteith model (Monteith, 1965) expanded upon the Penman model:

$$\lambda E = (\Delta A + c_{\rm p} \rho D/r_{\rm aa})/(\Delta + \gamma + \gamma (r_{\rm cs}/r_{\rm aa}))$$

where r_{aa} is the aerodynamic resistance above the canopy, and r_{cs} is stomatal resistance of the canopy.

SW


$$\lambda E_s = (\Delta A_s + \rho c_p D_0/r_{sa})/(\Delta + \gamma (1 + r_{ss}/r_{sa}))$$

$$\lambda E_c = (\Delta(A - A_s) + \rho c_n D_0/r_{ca})/(\Delta + \gamma (1 + r_{cs}/r_{ca}))$$

where A_s is available soil energy, and D_0 is vapor pressure deficit in the canopy; r_{sa} is the aerodynamic resistance between the substrate and canopy source height, r_{ca} is the boundary layer resistance of the vegetation, and r_{ss} is soil resistance. The aerodynamic resistance above the canopy (raa) and the aerodynamic resistance between the substrate and canopy source height (r_{sa}) are functions of leaf area index, eddy diffusivity decay constant, roughness length of the vegetation (function of vegetation height), zero plane displacement (function of vegetation height), a reference height above the canopy where meteorological measurements are available, wind speed, von Karman's constant, and roughness length of the substrate. D_0 is derived from the Ohm's law electrical analog for the vapor pressure and temperature difference between the canopy and the reference height above the canopy where fluxes out of the vegetation are measured. D_0 is a function of the measurable vapor pressure deficit at the reference height, D:

$$D_0 = D + (\Delta A - r_{aa}\lambda E_c(\Delta + \gamma))/\rho c_p$$

The ETo Calculator

Evapotranspiration from a reference surface

Reference Manual

Version 3.1 January, 2009

Dirk Raes

Food and Agriculture Organization of the United Nations Land and Water Division FAO, Via delle Terme di Caracalla, 00153 Rome, Italy dirk.raes@ees.kuleuven.be

3.8.7 Actual crop transpiration (Tr)

Thresholds for stomatal closure

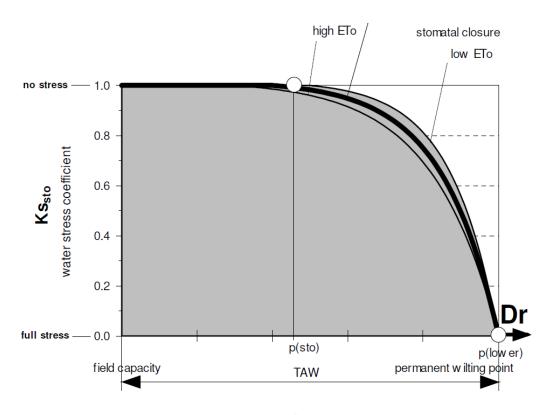
The actual rate of crop transpiration depends on the amount of water available in the root zone (Figure 3.8g). Crop transpiration is reduced below its maximum value as soon as the soil water content in the root zone (Wr) drops below the upper threshold for stomatal closure:

$$Wr_{no,upper} = \left[\theta_{FC} - p_{no} \left(\theta_{FC} - \theta_{PWP}\right)\right] 1000 Z$$
 (Eq. 3.8p)

or the root zone depletion (Dr) exceeds:

$$Dr_{sto,upper} = p_{sto} TAW$$
 (Eq.3.8q)

where Wr_{sto,upper} upper threshold expressed as an equivalent depth [mm]; Dr_{sto,upper} upper threshold expressed as root zone depletion [mm];


p_{sto} fraction of TAW at which stomata start to close;

 θ_{FC} soil water content at field capacity [m³(water)/m³(soil)];

 θ_{PWP} soil water content at permanent wilting point [m³(water)/m³(soil)];

Z effective rooting depth [m];

TAW total available soil water in the root zone [mm].

Figure~3.8h The water stress coefficient for stomatal closure (Ks_{sto}) for various degrees of root zone depletion (Dr)

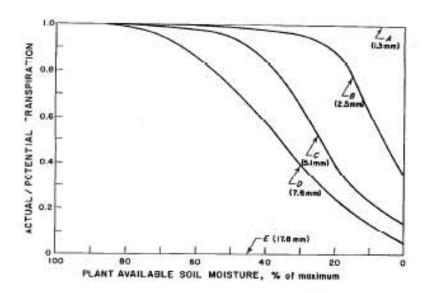


Figure 17.5: Actual over potential transpiration as a function of plant available water and daily PET.

The maximum possible root water extraction rate, integrated over the rooting depth, is equal to T_p (cm d⁻¹), which is governed by atmospheric conditions and plant characteristics. Taking into account the root length density distribution (Bouten, 1992), the potential root water extraction rate at a certain depth, $S_p(z)$ (d⁻¹) is calculated by:

$$S_p(z) = \frac{\ell_{\text{most}}(z)}{\int_{-D_{\text{most}}}^0 \ell_{\text{stort}}(z) dz} T_p \qquad (2.67)$$

where D_{root} is the root layer thickness (cm).

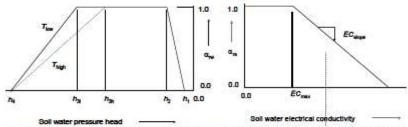


Figure 3.4 Reduction coefficient for root water Figure 3.5 Reduction coefficient for root uptake, α_m , as function of soil water pressure head h water uptake, are, as function of soil water and potential transpiration rate T_p (after Feddes et electrical conductivity EQ (after Maas and A., 1978).

Appendix 8 Critical pressure head values for root water extraction

After Taylor and Ashcroft (1972)

Crop	h_{3h}	ha	Стор	h_{3h}	$h_{\rm H}$
Vegetative crops	12/2002	19075-0	Deciduous fruit	-500	-800
Alfalfa	-1500	-1500	Avocadoes	-500	-500
Beans (snap and lima)	-750	-2000	Grapes		
Cabbage	-600	-700	early season	-400	-500
Canning peas	-300	-500	during maturity	-1000	-1000
Celery	-200	-300	Strawberries	-200	-300
Grass	-300	-1000	Cantaloupe	-350	-450
Lettuce	-400	-600	Tomatoes	-800	-1500
Tobacco	-300	-800	Bananas	-300	-1500
Sugar cane					
tensiometer	-150	-500	Grain crops		
blocks	-1000	-2000	Com		
Sweet com	-500	-1000	vegetative period	-500	-500
Turfgrass	-240	-360	during ripening	-8000	-12000
55			Small grains		
Root crops			vegetative period	-400	-500
Onions			during ripening	-8000	-12000
early growth	-450	-550			
bulbing time	-550	-650	Seed crops		
Sugar beets	-400	-600	Alfalfa		
Potatoes	-300	-500	prior to bloom	-2000	-2000
Carrots	-550	-650	during bloom	-4000	-8000
Broccoli	orano	9/5/5/	during ripening	-8000	-15000
early	-450	-550	Carrots	0000	15000
after budding	-600	-700	at 60 cm depth	-4000	-6000
Cauliflower	-600	-700	Onions		
	27/27/1	5757753	at 7 cm depth	-4000	-6000
Fruit crops			at 15 cm depth	-1500	-1500
Lemons	-400	-400	Lettuce	300000	
Oranges	-200	-1000	during productive phase	-3000	-3000

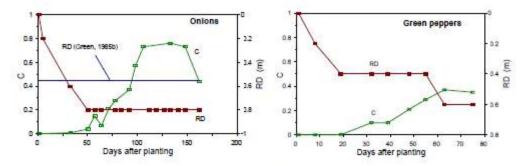


Figure 1

Measured values of canopy cover (C) and estimated root depth (RD, depth at which 90% of weekly soil-water depletion occurred) during the growing season of onions and green peppers.

Root depth recommended by Green (1985b) is also presented for onions

Crop	Maximum RD	Ho.	90% of	
Стор	(m)	Hc _{max} (m)	maximum C	
Onions	0.8	0.5	0.60	
Cabbage	0.8	0.3	0.90	
Carrots	0.8	0.3	0.90	
Beetroot	0.8	0.4	0.90	
Lettuce	0.6	0.3	0.88	
Swisschard	0.8	0.4	0.90	
Sweet-corn (cv. Cabaret)	1.0	1.7	0.81	
Sweet-com (cv. Jubilee)	0.6	2.1	0.83	
Sweet-com (cv. Paradise)	0.6	2.1	0.80	
Sweet-corn (cv. Dorado)	0.8	1.7	0.61	
Bush beans (cv. Provider)	0.4	0.5	0.74	
Bush beans (cv. Bronco)	0.8	0.5	0.71	
Runner beans	0.6	2.3	0.81	
Pumpkin (cv. Miniboer)	0.8	0.6	0.75	
Pumpkin (cv. Minette)	0.8	0.7	0.76	
Marrow (cv. President)	1.0	0.6	0.61	
Marrow (cv. Long White Bush)	0.8	0.65	0.74	
Squash (cv. Table Queen)	0.8	0.4	0.47	
Squash (cv. Waltham)	0.8	0.3	0.55	
Tomato (cv. Zeal)	0.6	0.6	0.48	
Tomato (cv. P747)	0.8	0.65	0.69	
Tomato (cv. HTX14)	0.8	0.45	0.53	
Eggplant	0.6	0.6	0.45	
Green peppers	0.6	0.5	0.31	
Chilli peppers	0.6	0.6	0.29	

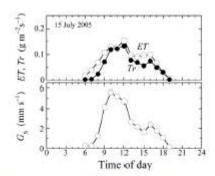


Fig. 12 Diurnal changes in evapotranspiration rate (ET), transpiration rate (Tr) and stomatal conductance (G_z) of the canopy in the cornfield on 15 July in the crop development stage in 2005, respectively.

Vol. 45, No. 4 (2007) (37) 235