Dynamics of Organically Bound Tritium (OBT) Accumulation in Rainbow Trout (Oncorhynchus mykiss): HTO Exposure Experiment

September 6-9, 2010

Sang Bog Kim, Ph.D.
Research Scientist
Environmental Technologies Branch
Chalk River Laboratories
Chalk River, Ontario
Canada

Background in Canada

- Canada has 20 CANDU reactors
 - 17 are operating
 - 3 are being refurbished
- Tritium is a Canadian priority
- Tritium in Drinking Water Regulation is 7,000 Bq/L
- Released forms (HT, HTO) and measured forms (HTO, OBT) are different
- Two different dose conversion factors (DCF) and retention times

Tritium Releases in Canada (2006)

	Gas Releases	Gas Releases	Liquid Releases
Facility	HTO (Bq/yr)	HT (Bq/yr)	HTO (Bq/yr)
Nuclear power plants	2.0×10^{15}	9.5×10^{13}	1.6×10^{15}
Waste management	5.5×10^{13}	0	4.4×10^{10}
Facilities using tritium	8.5×10^{13}	3.1×10^{14}	4.5×10^{10}
Research facilities	3.2×10^{14}	9.6×10^{11}	9.5×10^{13}
Chemical laboratories	7.8×10^{11}	1.7×10^{11}	6.6×10^{10}

Source from CNSC

Tritium Releases at CRL (2009)

Emission Type	DRL*	Average release
Air Emission (Bq/week)		
HTO HT	1.8 x 10 ¹⁵ 6.6 x 10 ¹⁶	1.8 x 10 ¹³ 2.6 x 10 ¹⁰
Liquid Emission (Bq/week)		
HTO to Ottawa River HTO to Maskinonge Lake Groundwater Monitoring	2.9 x 10 ¹⁶ 5.5 x 10 ¹⁵ 2.9 x 10 ¹⁶	8.9 x 10 ¹² 5.0 x 10 ¹¹ 4.0 x 10 ¹¹

^{* =} Derived release limit

Sampling Locations – Fish Study

Map A-1b: CRL Liquid and Biological Environmental Monitoring Locations - Outside CRL Boundary

Point Aux Baptême

Working on the Ottawa River

Total Fish Sampled

Mackey	35
Rolphton	26
Sand Spit	36
Cotnam	26
TOTAL # of fish:	123

Concentrations of Tritium in Aquatic Biota in Canada (1)

Location	Sample (n)	Туре	HTO (Bq/L)	OBT (Bq/L)	OBT/ HTO
Discharge A	Salmonid (3)	Pelagic	10.3 – 10.8	2.7 – 5.7	0.26 – 0.50
	Sucker (3)	Benthic	19.1 – 19.7	9.0 – 19.4	0.46 – 1.02
Discharge B	Salmonid (4)	Pelagic	13.9 – 60.2	2.0 – 8.4	0.10 – 0.52
	Sucker (3)	Benthic	14.3 – 21.3	8.6 – 14.3	0.47 – 1.00
	Algae (2)	-	11.4 – 13.1	32.1 – 38.5	2.45 – 3.38
Creek	Salmonid (3)	Pelagic	14.7 – 19.8	6.3 – 16.3	0.37 – 0.99
	Sucker (3)	Benthic	13.9 – 23.4	8.2 – 12.8	0.35 – 0.91

Concentrations of Tritium in Aquatic Biota in Canada (2)

Location	Sample (n)	Туре	HTO (Bq/L)	OBT (Bq/L)	OBT/ HTO
Effluent	Bass (2)	Pelagic	20.9 – 22.6	114.5 – 153.9	5.48 – 6.81
	Catfish (4)	Benthic	73.1 – 85.0	39.1 – 759.1	0.46 – 9.42
	Carp (4)	Benthic	54.1 – 56.4	18.9 – 51.2	0.34 – 0.95
Bay	Clam (2)	Benthic	6.3 – 8.9	68.2 – 169.4	7.66 – 26.8
	Mussel (1)	Benthic	9.1	310.4	34.1
Intake	Carp (4)	Benthic	7.1 – 14.6	9.5 – 32.6	1.04 – 2.39
	Catfish (2)	Benthic	11.6 – 12.9	40.1 – 42.5	3.29 – 3.46

Concentrations of Tritium in Aquatic Biota in Cardiff

Group	Species	HTO (Bq/kg- wet)	OBT (Bq/kg- wet)	OBT/ HTO
Crustacea	Shore crab	2500	56900	22.76
	Shrimp	250	39250	157
Mollusca	Mussel	3600	15700	4.36
	Whelk	8700	65200	7.49
	Winkle	0	4000	-
Marine fish	Grey mullet	30	420	14
	Sole (fillet)	500	4700	9.4
	Sole (whole)	19000	50500	2.66

Food Standards Agency (2003)

New Drinking Water Standard

- Canadian Nuclear Safety Commission (CNSC)
 proposed the 100 Bq/L design objective for protection
 of potable groundwater resources in Canada
- Average OBT/HTO ratios were on the order of 2-3 for plant products and 10 for animal product near nuclear facilities

Tritium Experiments

- Mussel (Elliptio complanata) experiment: 2006 2007
 - Field experiment
- Minnow (Pimephales promelas) experiment: 2008
 - Laboratory experiment
- Rainbow trout (Oncorhynchus mykiss) experiment:
 2009 ~
 - Biological Research Facility (BRF) and Canadian Animal Care Committee (CACC)
 - HTO exposure alone
 - OBT exposure alone
 - HTO and OBT exposure

Biological Research Facility (1)

- vent plug
- pressure gauge

cartridge filter holds pleated polyester cartridge cannister filter holds polyester cloth over 7 L Siporax

Biological Research Facility (2)

Biological Research Facility (3)

Biological Research Facility (4)

Rainbow Trout

Water Chemistry Parameters

Parameter	Acceptable Range	Measurement	Frequency
Dissolved oxygen	5 – 10 ppm	Polarographic probe	Daily
Temperature	12 -14 °C	Thermocouple	Daily
NO_2	0 – 2 ppm	Colorimetric kit	Weekly
рН	7.0 - 8.4	pH meter	Weekly
Conductivity	200 – 1000 μS/cm	Conductivity meter	Weekly
Alkalinity	30 – 150 ppm	Colorimetric kit	Weekly
NH ₃ /NH ₄	0 – 1 ppm	Colorimetric kit	Monthly
NO ₃	0 – 100 ppm	Colorimetric kit	Monthly

Initial Weight Ranges (g) of Fish

Exposure	Control tank	Test tank
7 days	N=26 (45.1 – 215.0)	N=26 (60.7 – 200.7)
30 days	N=6 (250.2 – 432.0)	N=5 (374.0 - 587.0)
70 & 140 days	N=22 (31.9 – 285.7)	N=23 (33.3 – 171.6)

Total fish weights were distributed evenly in both tanks.

Total Feed Amounts (2009)

		Exposure	Time	
Date	7 days	70 days	140 days	30 days
April 7 – April 13	290 g	-	-	-
April 23 – June 29	-	1735 g	1735 g	-
April 23 – September 9	-	-	2225 g	-
September 10 – October 9	-	-	-	232 g
Total	290 g	1735 g	3960 g	232 g

Experimental Scheme For the Rainbow Trout

Control tank	Test tank
7-day experiment	7-day experiment
70-day experiment	70-day experiment
140-day experiment	140-day experiment

Transferred

Control tank	Test tank
30-day depuration experiment	30-day uptake experiment

Tritium Concentrations in Tanks

Month (n*)	Test tank (Bq/L)	Control tank (Bq/L)	Comments
April (3)	7870 - 8543	58 - 110	Changed water (212 L) and added HTO
May (4)	7937 - 8213	107 - 237	Changed water (200 L) and added HTO
June (4)	8036 - 8286	330 - 535	Changed water (80 L)
July (2)	7871 - 7965	583 - 592	-
August (3)	6957 - 8012	449 - 481	Changed water (200 L) and added HTO
September (2)	7766 - 9381	461 - 477	Changed water (500 L) and added HTO
October (1)	9174	329	

n = the number of times tritium measured

Final Weight Ranges (g) of Fish

Exposure	Control tank	Test tank
7 days	N=26 (56.1 – 286.0)	N=26 (72.7 - 226.1)
30 days	N=6 (259.7 – 445.2)	N=5 (403.8 - 664.8)
70 & 140 days	N=22 (69.4 – 694.9)	N=23 (72.2 - 484.0)

Relative Growth Rate (RGR)

Exposure	Control	Test
7 days	0.0213	0.0159
30 days	0.0006	0.0027
70 & 140 days	0.0062	0.0089

HTO and OBT Concentrations (1)

HTO and OBT Concentrations (2)

HTO and OBT Concentrations (3)

Experiment	Tank	HTO (Bq/L)	OBT (Bq/L)
7 days	Control liver	89	161
•	Test liver	8,522	1,057
140 days	Control liver	493	688
·	Test liver	7,791	2,211
Food pellet	Both	-	198

Average OBT Formation Rates

	Uptake	
Experiment	(days)	Rate (h ⁻¹)
Clam	30	9.2 x 10 ⁻⁵
	90	6.1 x 10 ⁻⁵
	300	4.3 x 10 ⁻⁵
	400	1.4×10^{-5}
Minnow	1	7.7 x 10 ⁻⁴
	2	4.7×10^{-4}
	7	3.2 x 10 ⁻⁴
	35	1.3 x 10 ⁻⁴
	43	1.1 x 10 ⁻⁴
Trout	7	6.7 x 10 ⁻⁴
	30	1.3 x 10 ⁻⁴
	70	8.5 x 10 ⁻⁵
	140	5.8 x 10 ⁻⁵

Average OBT Depuration Rates

Experiment	Uptake (days)	Rate (h ⁻¹)
Clam	30	1.1 x 10 ⁻³
	90	1.1 x 10 ⁻³
	300	8.2 x 10 ⁻⁴
	400	8.6 x 10 ⁻⁴
	467	1.2 x 10 ⁻³
Trout	30	1.4 x 10 ⁻³

Measured Specific Activities

Animal	Uptake (days)	Ratio (OBT/HTO)
Mussel	30 90	0.066 0.133
Minnow	35 43	0.111 0.112
Trout	70 140	0.16 0.20

EMRAS II Fish Scenario

Fig. 4. Weight and OBT Kinetic (fast 1 metabolic) of Rainbow Trout. HTO 7000Bq/L, exposure start at 200g, growth rate from 200g to 1000g during 140d, final growth 3000g.

Findings

- OBT formation in fish will be close to the relative growth rate, while OBT loss will be close to the rate of metabolism in fish
- It was difficult to make a clear conclusion as to whether or not OBT can accumulate in organs
- In aquatic animals, OBT formation rates are slower than OBT loss rates
- All measured OBT/HTO values were lower than the reported value of 0.25 (conservative)

Ongoing Experiment

- Tritium contaminated food (total OBT concentration was $30,000\pm4,000$ Bq/L, non-exchangeable OBT was $23,500\pm3,700$ Bq/L)
- OBT formation and loss rates
- Ingredients are wheat middling, corn gluten meal, fish oil, soy protein concentrate, fish meal, poultry byproducts meal, soybean oil, skim milk powder, feather meal, vitamins, minerals etc.
- Mix, Form into 4mm pellets and dry
- Food consumption of fish was not homogeneous

Future Experiment

- HTO exposure (7,000 Bq/L) and contaminated food (30,000 Bq/L) simultaneously
- Apply to fish-tagging skill
- HTO and OBT concentrations and OBT/HTO ratio
- Organ distribution if available

Discussion

- Tritium concentration levels
 - 100 Bq/L, 7,000 Bq/L and 30,000 Bq/L
- Uncertainty
 - 100 Bq/L represents an "essentially negligible" lifetime cancer risk of about 5 x 10⁻⁶ (from 1 x 10⁻⁵ to 1 x 10⁻⁶, Health Canada)
 - Variability of OBT/HTO ratio in fish
 - Gaps do exist in tritium environmental science
- OBT dynamics in fish
 - Key parameters (metabolism, water temperature, prey availability) and OBT biological halftime (loss rate)

Thanks

- Carmen Shultz (Research Technologist in CRL)
- Marilyne Stuart (Research Scientist in CRL)
- Mike Bredlaw (Research Technologist in CRL)
- Who else?

