EMRAS II Working Group 1 Kiev 21-23 September 2010

Justin Smith

Centre for Radiation, Chemical and Environmental Hazards formerly the National Radiological Protection Board

Scenario A (v2)

Releases to the marine environment – results using PC-CREAM 08

Exposure pathway		Dose Sv/y		
	Co-60	Cs-137	Sr-90	
Internal dose rate from sediments	-	-	-	
External dose rate from sediments	4.62E-05	5.78E-06	1.55E-07	
Internal dose rate from fish	4.00E-07	2.20E-06	1.10E-07	
Internal dose rate from crustaceans	1.94E-06	3.22E-07	5.33E-08	
Internal dose rate from mollusca	4.42E-07	1.46E-07	1.21E-08	
Total dose rate	4.90E-05	8.45E-06	3.30E-07	

Scenario A (v2)

Comments on marine assessment

 Possible inconsistency in use of filtered or unfiltered water concentrations between participants.

•I used 1 10⁻⁵ t m⁻² y⁻¹ and should be 1 10⁻⁴ t m⁻² y⁻¹ (i.e. 1 10^{-5} t m⁻³ y⁻¹) but this only has small impact on bed sediment concentrations of a few percent.

•Kd (Bq t⁻¹ per Bq m⁻³)

- $Co = 2 \ 10^5$, $Sr = 1 \ 10^3$, $Cs = 3 \ 10^3$ for coastal regions <u>• Cf (Bq t⁻¹ per Bq m⁻³)</u>

- Co = 1 10³, Sr = 2, Cs = 1 10² for fish

- Co = 1 10⁴, Sr = 2, Cs = 3 10¹ for crustaceans

- Co = 5 10³, Sr = 1, Cs = 3 10¹ for molluscs

•PC-CREAM assumes instant dilution of marine discharges into a large volume.

Scenario A (v2) Releases to atmosphere – results using PC-CREAM 08

Exposure pathway

Dose Sv/y

Co-60	Cs-137	I-131	Kr-85
4.96E-06	2.28E-06	3.65E-06	0
3.56E-08	1.80E-09	5.50E-09	2.82E-10
1.35E-04	1.07E-04	3.95E-06	0
5.56E-07	2.31E-06	1.25E-05	0
2.78E-08	7.08E-06	7.93E-06	0
2.50E-08	9.06E-07	1.28E-06	0
4.36E-06	8.86E-06	4.10E-05	0
3.37E-06	6.09E-06	1.81E-06	0
3.19E-08	7.42E-07	1.29E-07	0
4.00E-06	4.00E-06	4.00E-06	4.00E-06
	Co-60 4.96E-06 3.56E-08 1.35E-04 5.56E-07 2.78E-08 2.50E-08 4.36E-06 3.37E-06 3.19E-08 4.00E-06	Co-60Cs-1374.96E-062.28E-063.56E-081.80E-091.35E-041.07E-045.56E-072.31E-062.78E-087.08E-062.50E-089.06E-074.36E-068.86E-0663.19E-087.42E-074.00E-064.00E-06	Co-60Cs-137I-1314.96E-062.28E-063.65E-063.56E-081.80E-095.50E-091.35E-041.07E-043.95E-065.56E-072.31E-061.25E-052.78E-087.08E-067.93E-062.50E-089.06E-071.28E-064.36E-068.86E-064.10E-053.37E-066.09E-061.81E-063.19E-087.42E-071.29E-074.00E-064.00E-064.00E-06

Total dose rate

Health Protection Agency

1.39E-04

7.63E-05

1.52E-04

4.00E-06

Scenario A (v2)

Comments on atmospheric assessment

- I used adult inhalation dose coefficient for Co-60 of 1 10⁻⁸ (not 3.1 10⁻⁸) Sv Bq⁻¹
- •Depth of top mixed soil layer 0.3 m not 0.1 m
- •Transfer parameter for radionuclide uptake in crops from soil was in terms of wet mass plant to dry mass soil
- •For translocation used fixed parameter values for semimobile or mobile
- •Differences in dose from ingestion of some terrestrial foods could be further investigated by comparison of deposition rates.

•Transfer parameter from air immersion to human dose for Kr-85 ~ 2.82 $10^{-10}/7.24 \ 10^{-2} = 4 \ 10^{-9} \ \text{Sv y}^{-1} \ \text{per Bq m}^{-3}$

Scenario B Defining the representative person

Information required

- The discharge
 - Discharge routes
 - Discharged radionuclides
 - Exposure pathways

- Habit surveys

- Age groups
- Ingestion rates
- Inhalation rates
- Location
- Occupancies
- Dwellings

Scenario B

Defining the representative person

•The previous data would be reviewed to identify potential candidates for critical groups/representative person. A full set of exposure pathways would be considered for

- Those most exposed to atmospheric discharge
 - Consider high consumers of terrestrial foods
 - Individuals spending a lot of time outdoors close to the site
- Those most exposed to marine discharge
 - Consider high consumers of marine foods
 - Individuals spending a lot of time outdoors along the coast
- Those most exposed to combined discharges
 - Habits are such that summed exposure from atmospheric and aquatic discharges may be significant

Defining the representative person

 Review of habit data may indicate that a single group represents two or more of the previous categories

•Review of habit data may indicate that supplementary data are required eg make assumptions about locations (eg 0.5 km and 5 km), use data from distributions based on national habit surveys, the 'Top-Two' approach may be used.

•Dose assessments carried out for the selected groups to identify critical group/representative person.

Scenario B

•So it is likely that dose assessments would be done for very similar groups to those identified by EA (see below) and the worst case group would be selected for the critical group/representative person.

1. Atmospheric pathway exposure groups
Green vegetable consumers
Root vegetable consumers
Domestic fruit consumers
Milk consumers
Sheep meat consumers
Occupants for plume pathways (inner area)
2. Aquatic pathway exposure groups
Sea fish consumers
Crustacean consumers
Mollusc consumers
Occupants for exposure - Sediment

Health Protection Agency