

Application of a generic two-age model to a benchmark scenario for radiation dose effects to populations – preliminary results

Jordi Vives i Batlle

SCK.CEN

Jordi.vives.i.batlle@sckcen.be

Copyright © 2010 SCK•CEN EMRAS II 3rd Technical Meeting

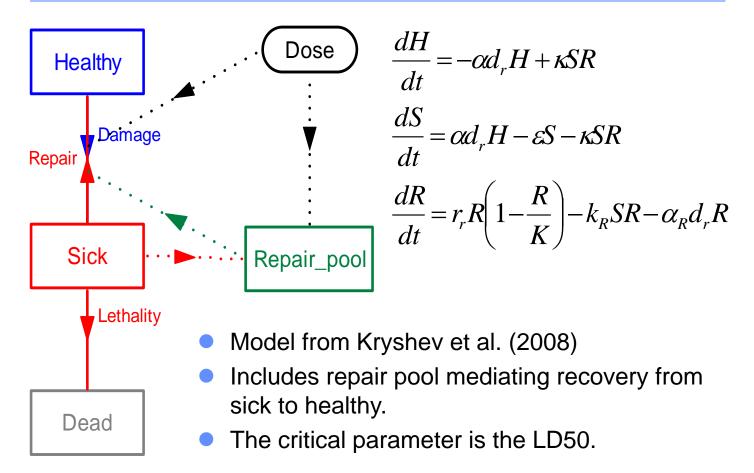
Vienna, 24 – 28 January 2011

Study objectives

- Develop a two-age, logistic population model with radiation effects.
- Test the model with the EMRAS benchmark scenario "Population response to chronic irradiation".
 - Stable generic populations of mice, hare/rabbit, wolf/wild dog and deer.
 - Carrying capacity = 1000 individuals.
- Predict population effects for chronic low-LET radiation
 - Dose rates of 0 to 50 mGy/day in increments of 10 mGy/day.
 - 5 years, with an additional 2 years to test for recovery of the population.
- Benchmark endpoints:
 - Survival fraxction at T = 1, 2, 3, 4 and 5 y
 - Recovery time after end of exposure.

Basis of the population model

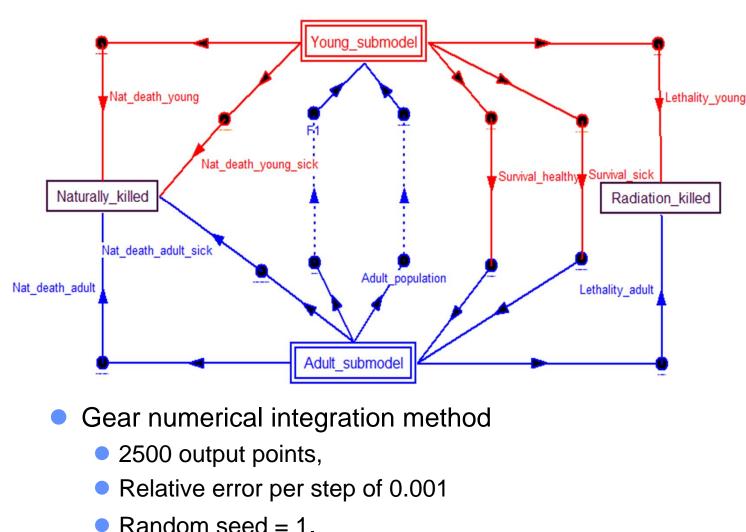
Logistic function with a built-in self-recovery capacity:


$$\begin{aligned} \frac{dN_0}{dt} &= rF\left(1 - \frac{N_0 + N_1}{K}\right) \left(1 - \frac{W}{N_1}\right) - \left(s + d_0\right) N_0 \\ \frac{dN_1}{dt} &= sN_0 - d_1 N_1 \\ \frac{dF}{dt} &= -rF\left(1 - \frac{N_0 + N_1}{K}\right) \left(1 - \frac{W}{N_1}\right) + fF\left(1 - \frac{F}{L}\right) \end{aligned}$$

Where:

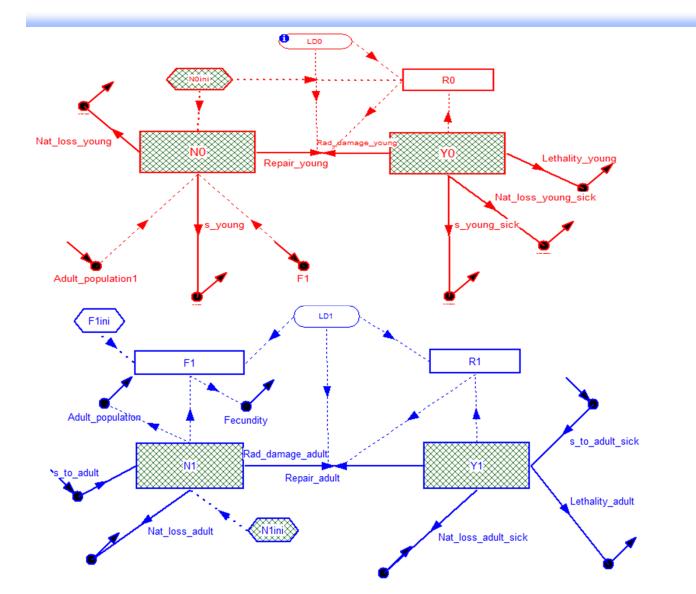
- N_0 , N_1 : Population numbers for young and adult
- F: Fecundity
- K = L: Carrying capacity and fecundity recovery constant
- r = f: Reproduction and fecundity rates
- s, d_0, d_1 : growth and death rates

Effects and repair model


The full model

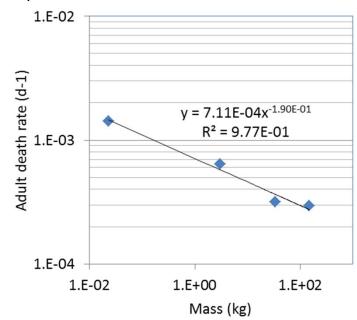
• Complete set of equations:

$$\begin{aligned} \frac{dN_{0}}{dt} &= -\alpha_{0}d_{r}N_{0} + \kappa_{0}Y_{0}R_{0} + rF\left(1 - \frac{N_{0} + N_{1} + Y_{0} + Y_{1}}{K}\right)\left(1 - \frac{W}{N_{1}}\right) - (s + d_{0})N_{0} \\ \frac{dY_{0}}{dt} &= \alpha_{0}d_{r}N_{0} - \kappa_{0}Y_{0}R_{0} - \varepsilon_{0}Y_{0} - (s + d_{0})Y_{0} \\ \frac{dR_{0}}{dt} &= r_{0}R_{0}\left(1 - \frac{R_{0}}{M_{0}}\right) - k_{R}^{0}Y_{0}R_{0} - \alpha_{R}^{0}d_{r}R_{0} \\ \frac{dN_{1}}{dt} &= -\alpha_{1}d_{r}N_{1} + \kappa_{1}Y_{1}R_{1} + sN_{0} - d_{1}N_{1} \\ \frac{dY_{1}}{dt} &= \alpha_{1}d_{r}N_{1} - \kappa_{1}Y_{1}R_{1} - \varepsilon_{1}Y_{1} + sN_{0} - d_{1}N_{1} \\ \frac{dR_{1}}{dt} &= r_{1}R_{1}\left(1 - \frac{R_{1}}{M_{1}}\right) - k_{R}^{1}Y_{1}R_{1} - \alpha_{R}^{1}d_{r}R_{1} \\ \frac{dF}{dt} &= -\alpha_{f}^{1}d_{r}F - rF\left(1 - \frac{N_{0} + N_{1} + Y_{0} + Y_{1}}{K}\right)\left(1 - \frac{W}{N_{1}}\right) + fF\left(1 - \frac{F}{L}\right) \\ \alpha_{i}, \alpha_{R}^{i}, \alpha_{f}^{i}, \varepsilon_{i}, \kappa_{i}, k_{R}^{i}, r_{i}, f_{3}: \text{ parameters for the radiation model} \end{aligned}$$



ModelMaker main model

ModelMaker submodels


Raw genomics data

Common name	Latin name	Longevity (field)	Longevity (captivity)		Adult mass (kg)	Newborn mass (kg)	Basal metabolic rate (Watts/g)		IMR	Reprod rate (d ⁻¹)
Field vole	Microtus agrestis	7.31E+02	1.75E+03	3.90E+01	2.80E-02	2.30E-03	1.47E-02	1.30E-02		
Field mouse	Apodemus sylvaticus	5.48E+02	1.46E+03	6.80E+01	2.34E-02	1.50E-03	1.11E-02			5.41E-02
Red- backed mouse	Clethrionomy s glareolus	5.48E+02	1.79E+03	5.95E+01	2.08E-02		1.45E-02	8.09E-02		
House mouse	Mus musculus		1.46E+03	4.20E+01	2.05E-02		1.51E-02	2.98E-02	2.74E-05	1.03E-01
Common shellduck	Tadorna tadorna	3.65E+03	5.48E+03	7.30E+02	1.15E+00			7.40E-02		
Western roe deer	Capreolus capreolus		5.48E+03	5.34E+02	2.17E+01	1.00E+00	2.16E-03			4.38E-03
Spotted deer	Axis axis		7.60E+03	8.40E+02	3.60E+01	3.14E+00				
Reindeer	Rangifer tarandus		7.93E+03	6.71E+02	1.01E+02	6.50E+00	1.41E-03	4.70E-03		
Red deer	Cervus elaphus		1.15E+04	7.91E+02	2.00E+02	1.01E+01	1.68E-03	6.00E-03		2.46E-03
Moose	Alces alces		6.72E+03	6.82E+02	3.86E+02	1.28E+01	8.83E-04	3.90E-03		3.56E-03
Horse	Equus caballus	8.22E+03	1.83E+04	9.44E+02	2.50E+02	7.90E+01			5.48E-07	2.74E-03
Gray wolf	Canis lupus	4.02E+03	5.84E+03	6.70E+02	2.66E+01	4.50E-01		1.77E-02		1.31E-02
Dog (big)	Canis domesticus	4.02E+03	8.77E+03	5.10E+02	4.00E+01			2.44E-02		1.64E-02
Elephant	Loxodonta africana	1.28E+04	2.56E+04	7.31E+03	4.80E+03	1.05E+02		3.00E-04	5.48E-06	5.48E-04
Rabbit	Oryctolagus cuniculus		3.29E+03	7.31E+02	1.80E+00	4.50E-02	3.41E-03	2.28E-02		5.89E-02
European hare	Lepus europaeus		3.91E+03	2.36E+02	4.20E+00	1.20E-01		1.91E-02		2.08E-02

Plugging the IMR data gap

- Adult mortality rate in the laboratory = ln(10) / longevity, Tmax = maximum age (age of 10% longest survivors).
- Allometric relationship between death rate and mass for adult: $d_1 = 7.11E-04 \times m_1^{-0.19}$; $R^2 = 0.98$.
- We adapt this law to fit the IMR of the young mouse with the same exponent: $2.74 \times 10^{-5} = \alpha$ $\times 0.0019^{-0.19}$ so $\alpha =$ 8.32E-06 and d₀ = $8.32 \times 10^{-6} \times m_0^{-0.19}$.
- Allometric calculation of LD₅₀ for adult: LD₅₀ = 7.21 × M^{-0.13}

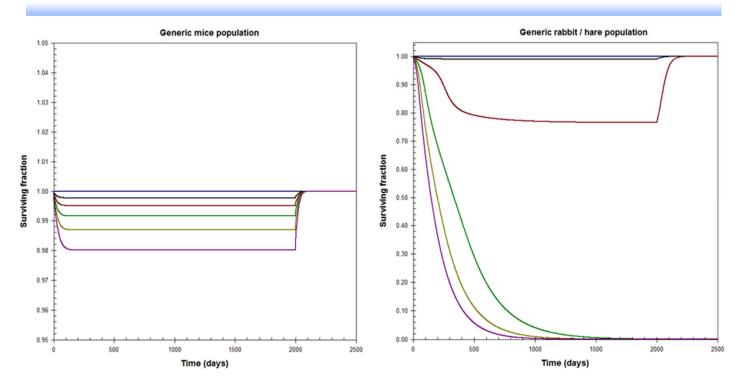
 For the young we assume conservatively the same LD50 as the Bytwerk study is for adults of the species.

Model parameters

Sub- model	Parameter	Description	Mouse	Hare/rabbit	Wolf/wild dog	Deer
Young	d ₀	Death rate for young (d ⁻¹)	2.74E-05	1.34E-05	9.68E-06	5.80E-06
	m _o	Mass for young (kg)	1.90E-03	8.25E-02	4.50E-01	6.71E+00
Adult	d ₁	Death rate for adult (d ⁻¹)	1.42E-03	6.40E-04	3.15E-04	2.93E-04
	m ₁	Mass for adult (kg)	2.32E-02	3.00E+00	3.33E+01	1.49E+02
General	Allom_int_LD5 0	Intercept for LD ₅₀ (Gy kg ^{0.1297})	7.21E+00	7.21E+00	7.21E+00	7.21E+00
	Allom_slo_LD5 0	Slope for LD_{50} (dimensionless)	-1.30E-01	-1.30E-01	-1.30E-01	-1.30E-01
	S	Growth rate (d ⁻¹)	4.12E-02	2.10E-02	2.11E-02	4.87E-03
	f	Recovery rate for fecundity (d ⁻¹)	7.88E-02	3.98E-02	1.48E-02	2.68E+02
	r	Reproduction rate (d ⁻¹)	7.88E-02	3.98E-02	1.48E-02	3.47E-03
	К _f	Carrying capacity of fecundity (individuals)	1.00E+03	1.00E+03	1.00E+03	1.00E+03
	К _с	Carrying capacity of ecosystem (individuals)	1.00E+03	1.00E+03	1.00E+03	1.00E+03
	W ₁	Allee parameter (individuals)	2.00E+00	2.00E+00	2.00E+00	2.00E+00
	е	Lethality rate (d ⁻¹)	2.30E-02	2.30E-02	2.30E-02	2.30E-02
	d _r	Dose rate (Gy)	0.01 - 0.05	0.01 - 0.05	0.01 - 0.05	0.01 - 0.05
	T _c	Cut-off time for exposure (d)	2.00E+03	2.00E+03	2.00E+03	2.00E+03

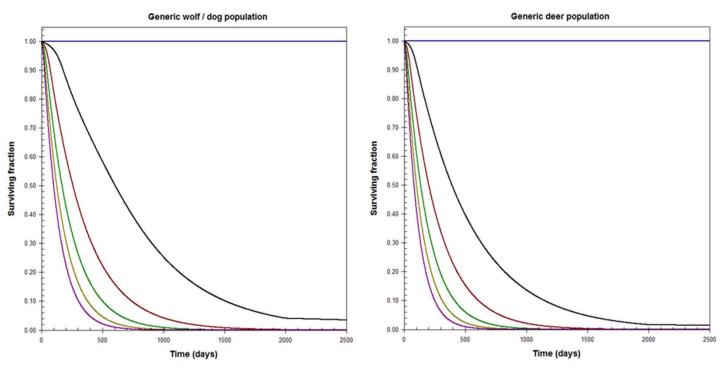
Results – % survival versus dose rate (Gy d⁻¹)

Organism	Time (v)	d, = 0.00	d, = 0.01	d, = 0.02	d, = 0.03	d, = 0.04	d, = 0.05
Rat	1	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	2	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	3	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	4	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	5	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	End sim	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Rabbit/Hare	1	100.0%	99.1%	81.7%	46.1%	22.6%	13.3%
	2	100.0%	99.1%	77.7%	11.9%	3.5%	1.4%
	3	100.0%	99.1%	76.9%	2.8%	0.6%	0.1%
	4	100.0%	99.1%	76.7%	0.7%	0.1%	0.0%
	5	100.0%	99.1%	76.6%	0.2%	0.0%	0.0%
	End sim	100.00%	100.00%	100.00%	0.06%	0.00%	0.00%
Wolf/dog	1	100.0%	70.2%	35.2%	19.4%	11.0%	6.2%
won/dog	2	100.0%	40.8%	10.4%	3.3%	1.1%	0.2%
	3	100.0%	21.3%	3.1%	0.6%	0.1%	0.0%
	4	100.0%	10.9%	0.9%	0.1%	0.0%	0.0%
	5	100.0%	5.6%	0.3%	0.0%	0.0%	0.0%
	End sim	100.00%	3.49%	0.13%	0.01%	0.00%	0.00%
Deer	1	100.0%	53.1%	26.4%	13.3%	6.7%	3.4%
	2	100.0%	24.4%	6.2%	1.6%	0.4%	0.1%
	3	100.0%	11.2%	1.4%	0.2%	0.0%	0.0%
	4	100.0%	5.1%	0.3%	0.0%	0.0%	0.0%
	5	100.0%	2.4%	0.1%	0.0%	0.0%	0.0%
	End sim	100.00%	1.41%	0.03%	0.00%	0.00%	0.00%

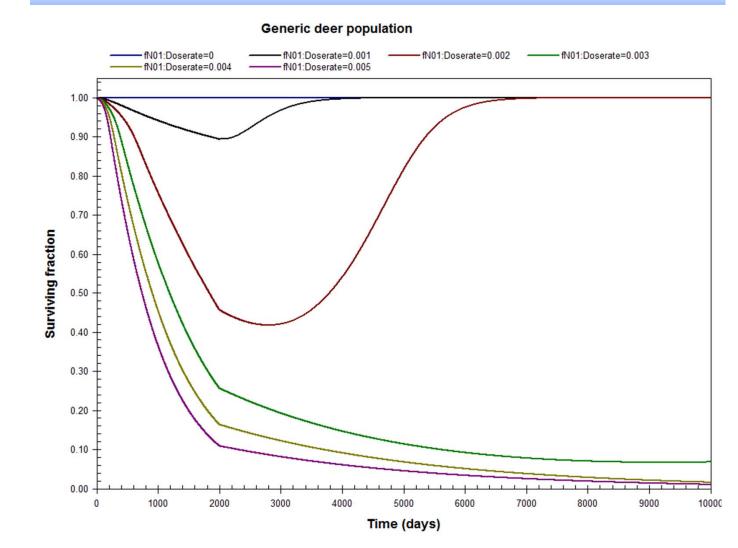


Results – % survival versus dose rate (Gy d⁻¹)

Organism	Time (v)	d, = 0.00	d, = 0.01	d, = 0.02	d, = 0.03	d, = 0.04	d, = 0.05
Rat	1	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	2	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	3	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	4	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	5	100.0%	99.8%	99.5%	99.1%	98.7%	98.0%
	End sim	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
Rabbit/Hare	1	100.0%	99.1%	81.7%	46.1%	22.6%	13.3%
	2	100.0%	99.1%	77.7%	11.9%	3.5%	1.4%
	3	100.0%	99.1%	76.9%	2.8%	0.6%	0.1%
	4	100.0%	99.1%	76.7%	0.7%	0.1%	0.0%
	5	100.0%	99.1%	76.6%	0.2%	0.0%	0.0%
	End sim	100.00%	100.00%	100.00%	0.06%	0.00%	0.00%
Wolf/dog	1	100.0%	70.2%	35.2%	19.4%	11.0%	6.2%
won/dog	2	100.0%	40.8%	10.4%	3.3%	1.1%	0.2%
	3	100.0%	21.3%	3.1%	0.6%	0.1%	0.0%
	4	100.0%	10.9%	0.9%	0.1%	0.0%	0.0%
	5	100.0%	5.6%	0.3%	0.0%	0.0%	0.0%
	End sim	100.00%	3.49%	0.13%	0.01%	0.00%	0.00%
Deer	1	100.0%	53.1%	26.4%	13.3%	6.7%	3.4%
	2	100.0%	24.4%	6.2%	1.6%	0.4%	0.1%
	3	100.0%	11.2%	1.4%	0.2%	0.0%	0.0%
	4	100.0%	5.1%	0.3%	0.0%	0.0%	0.0%
	5	100.0%	2.4%	0.1%	0.0%	0.0%	0.0%
	End sim	100.00%	1.41%	0.03%	0.00%	0.00%	0.00%


Results – mice & rabbit/hare

- Mice: population reaches a new stable level in 150 days with loss of less than 2%. Recovery in about 100 days.
- Rabbit / hare: At 0.01 Gy d⁻¹ stable level with loss of less than 1%. At 0.01 Gy d⁻¹ loss of 25% in 2000 days recovering in ~ 250 days. Population crashes at higher dose rates.


Results – wolf / dog & deer

- Dog / wolf: Reduction to less than 6% for 0.01 Gy d⁻¹ and to extinction for higher doses.
- Deer: Similar results surviving population at year 5 for 0.01 Gy d⁻¹ is 2.5%.

Results at lower doses

Conclusions

- For small mammals, dose rates less than 0.01 Gy d⁻¹ or about 400 μGy h⁻¹ are not fatal to the population
- For large mammals chronic exposure at this level is predicted to be fatal.
- Adose rate of 0.001 Gy d⁻¹ (40 μGy h⁻¹) is the highest that will not drive the deer population to extinction, causing a population loss of < 10% and allowing for recovery after about 5 years post- exposure.
- At an even lower exposure of 0.00025 Gy d⁻¹ (10 μGy h⁻¹) effects are negligible (< 2%).
- The results from this model are preliminary and yet to be validated.
- Nevertheless results make sense of the ERICA benchmark value of 10 μGy h⁻¹ and the USDoE benchmark of 40 μGy h⁻¹ for terrestrial animals.