Generic Population Model for Roe Deer

Isao Kawaguchi

Assumptions

- I focused only female dynamics.
- Sex ratio is assumed as 1:1.
- Age specific survival rate was obtained from Fig 2 of McElligott et al. (by manual measuring).
- Each female (>2 age) reproduce 0.8 female offsprings per year.
- I couldn't find appropriate dose rate -response data for Roe deer, thus I used acute LD₅₀=8.7Gy value from ICRP Pub. 108 and omitted radiation effect to reproduction.

Parameters for Roe deer

Maximum age=12

survival rate =

{0.4732060,.7084470,.8537690,.8365120,.8365120,.7084470,.7992730,.7 638510,.7447770,.7820160,.5095370,.3269750,0}

/ 0	0.378565	0.378565	0.378565	0.378565	0.378565	0.378565	0.378565	0.378565	0.378565	0.378565	0.378565 γ
0.708447	0	0	0	0	0	0	0	0	0	0	0
0	0.853769	0	0	0	0	0	0	0	0	0	0
0	0	0.836512	0	0	0	0	0	0	0	0	0
0	0	0	0.836512	0	0	0	0	0	0	0	0
0	0	0	0	0.708447	0	0	0	0	0	0	0
0	0	0	0	0	0.799273	0	0	0	0	0	0
0	0	0	0	0	0	0.763851	0	0	0	0	0
0	0	0	0	0	0	0	0.744777	0	0	0	0
0	0	0	0	0	0	0	0	0.782016	0	0	0
0	0	0	0	0	0	0	0	0	0.509537	0	0
ν Ο	0	0	0	0	0	0	0	0	0	0.326975	0 /

intrinsic growth rate= 0.0474502/year

Malthus growth model

$$X(t) = X_0 e^{-(r-\alpha)t}$$
$$X(t) = X_0 e^{-r(t-5)+5\alpha}$$

Logistic model

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{K}\right)$$

Age structured population (Discrete time model)

