Canadian Nuclear Safety Commission Commission canadienne de sûreté nucléaire

Canadian Benthic Data Set

Steve Mihok & Graham Smith EMRAS II Meeting, Vienna, Austria January 25, 2011

nuclearsafety.gc.ca

RECAP: Thompson et al. (2005)

- 12 contaminants, As, Cr, Cu, Mo, Ni, Pb, Se, U, V, Pb-210, Po-210, Ra-226 (N=1,020 2,269)
- Uranium mining regions with co-located benthos sampling & organic depositional sediments
- 132 Ontario & Saskatchewan sites
- 190 genera and/or species
- Criteria/methods follow Persaud et al. (1992) as used for Ontario LEL / SEL guidelines (As, Cr, Cu, Ni, Pb)
- 90th percentile SSLC for each taxon
 5th percentile LEL, 95th percentile SEL calculated
- Nonparametric percentiles, many selection criteria, no dose calculations, no bootstrapping, no multivariate

Original Methods

- "Weighted" percentile as in Persaud et al. (1992), also calculated "closest observation" percentile (SPSS)
- Weighted value typically higher Uranium LEL 104 vs 32, SEL 5,874 vs 3,410 ug/g
- Six data selection criteria
- Minimum of 10 sites per taxon, lost considerable data
- Concentration range 2 orders of magnitude (V, Cr x)
- Spatial range (35 reference sites, 97 contaminated)
- Mainly benthic species (81% defined as infaunal)
- Minimum of 20 SSLCs for LEL/SEL calculation
- Data mean ~30 for SSLCs, LEL/SEL range N=28-59

Suggested Follow-up

- Dose Calculations (CNSC) - PSL2 & ERICA approaches
- Multivariate Analyses (IRSN) 0 - RDA & PCA
- Augmenting the data set (CNSC) Trace Original Records ٩

 - RCA for 2002-2009 data
- Other possible exercises 0
 - Parametric curve fitting for percentilesBootstrapping for confidence intervals

 - Sensitivity Analysis (sites, SSLCs, taxa)

Dose Questions from 2005

- Why does species richness decline at contaminated sites, e.g. the loss of bivalves and gastropods?
 - Multivariate analyses (metals vs radionuclides)
- Why are Pb-210, Po-210 LEL values so low?
 - Dosimetry or biased sampling of certain daughters

Sediments Bq / g dw	LEL range Thompson et al. 2005	Benthos screening at 10 µGy/h (ERICA)
Ra-226	0.1 – 0.6	0.6
Pb-210	0.5 - 0.9	80
Po-210	0.6 – 0.8	600

PSL2 Methods - INTERNAL dose only

Empirical: 3 decay series headed by U-238, Th-230, Rn-222

1		Calculations, % Dose		Data	Issues	Notes
	U-238	Nat uran 49%	15.9%	96%	Pooled DCC	
	Th-234	Ignored			Equilibrium	
	U-234	Nat uran 49%			Pooled DCC	Higher DCC
	Th-230	= daughter	10.2%		Equilibrium	Empirical
	Ra-226	Measured	15.6%	99%		
	Rn-222	= 30% parent	18.7%		Retention %	Unknown
	Pb-210	= Rn parent		74%		
	Bi-210	= Rn parent				
	Po-210	= Rn parent	39.4%	70%	Equilibrium	CRITICAL
	U-235 ++	Nat uran 2%			Pooled DCC	Daughters

% = Reference Lake example where all data were collected

Dose example with measured data

- DW Sediment = Chironomid (90% water, PH data)
- Alpha RBE=40, Amiro (1997), Th-234 ignored
- Pooled Uranium (ug x 0.0252), U-238 DCC
- Rn-222 = 30% Ra-226 (vertebrate, long-term)
- Note lack of equilibrium (Po > Ra > U/Th)

Sample	April 2004	April 2004 0-2 cm SEDIMENTS Mean					
Data Source	Fulton Cre	Fulton Creek Watershed 2004					
	1						
Fulton Lake	Measured	Estimated	Estimated	PARAMETER			
Reference	Sediment	DRY Sediment	WET Invertebrate	DCF	Dose		
Nuclide	[Bq/g dw]	Bq/g dry wt	Bq/kg wet wt	Gy/a per Bq/kg	Gy/a	% Dose	
Uranium (ug)	1.66	0.042	4.2	8.64E-04	3.62E-03	15.9%	
Th-230	0.024	0.024	2.4	9.64E-04	2.31E-03	10.2%	
Ra-226	0.036	0.036	3.6	9.84E-04	3.54E-03	15.6%	
Rn-222 = 30% Ra		0.011	1.1	3.93E-03	4.24E-03	18.7%	
Pb-210	0.082	0.082	8.2	2.17E-07	1.78E-06	0.0%	
Bi-210		0.082	8.2	1.97E-06	1.62E-05	0.1%	
Po-210	0.082	0.082	8.2	1.09E-03	8.94E-03	39.4%	

Dose Rate	0.02	Gy/a
	0.1	mGy/d
	2.6	uGy/h
Hazard Quotients	5	
PSL2 Benthos		0.01
Protect Generic		0.26
Protect Invertebrat	te	0.01

ERICA Approach (Internal + External)

All calculations, radionuclides - except for dose from water

F	Differences vs PSL2	Data	PSL2
U-238	Explicit calculation	96%	Pooled with Nat U
Th-234	Included		Excluded
U-234	Explicit calculation		Pooled with Nat U
Th-230	Equilibrium with U		Equilibrium with Ra
Ra-226	Rn-222 in DCC	99%	Mostly measured
Rn-222	Included in Ra-226		30% of Ra-226
Pb-210	100% vs 30%	74%	30% of Ra-226
Bi-210	100% vs 30%		30% of Ra-226
Po-210	100% vs 30%	70%	30% of Ra-226
U-235 ++	Explicit calculations		Pooled with Nat U

Alpha RBE = 10 vs 40, DCCs more realistic, Insect Larvae model

PSL2 using ERICA assumptions

Similar results as conservative parameters cancel out, especially when missing data for Ra-226 daughters

Fulton Lake	Measured	Estimated	Estimated	PARAMETER		
Reference	Sediment	DRY Sediment	WET Invertebrate	DCF	Dose	
Nuclide	[Bq/g dw]	Bq/g dry wt	Bq/kg wet wt	Gy/a per Bq/kg	Gy/a	% Dose
Uranium (ug)	1.60	0.042	2 4.2	8.64E-04	3.62E-03	13.3%
Th-230		0.021	2.1	9.64E-04	2.02E-03	7.4%
Ra-226	0.036	0.036	3.6	9.84E-04	3.54E-03	13.0%
Rn-222 = 30% Ra		0.036	3.6	3.93E-03	1.41E-02	51.9%
Pb-210		0.036	3.6	2.17E-07	7.81E-07	0.0%
Bi-210 Po-210		0.036 0.036	3.6 3.6	1.97E-06 1.09E-03	7.09E-06 3.92E-03	0.0% 14.4%

Dose Rate	0.03 Gy/a
	0.1 mGy/d
	3.1 uGy/h

Hazard Quotients	
PSL2 Benthos	0.01
Protect Generic	0.31
Protect Invertebrate	0.02

ERICA - Patterns in DCCs (Insect)

IntAlpha of several radionuclides and ExtBG of Ra-226/223 have the most potential to affect results

U-235 & daughters not important (low % of natural uranium)

Organism

Insect larvae

U-235 series

Average of DCC	Туре				
Nuclide	ExtBG	ExtLowB	IntAlpha	IntLowB	IntBG
Pb-210	1.10E-04	0.00E+00	0.00E+00	4.20E-06	1.36E-04
Po-210	4.90E-09	0.00E+00	3.10E-03	0.00E+00	0.00E+00
Ra-226	1.30E-03	0.00E+00	1.37E-02	0.00E+00	2.80E-04
Th-227	6.40E-05	0.00E+00	3.37E-03	0.00E+00	3.40E-05
Th-230	9.00E-07	0.00E+00	2.70E-03	0.00E+00	0.00E+00
Th-234	3.70E-04	0.00E+00	0.00E+00	1.60E-06	1.58E-04
U-234	9.40E-07	0.00E+00	2.80E-03	0.00E+00	0.00E+00
U-235	1.10E-04	0.00E+00	2.59E-03	0.00E+00	1.08E-04
U-238	7.20E-07	0.00E+00	2.40E-03	0.00E+00	0.00E+00
Ac-227	1.46E-07	8.89E-28	3.93E-05	4.45E-06	4.66E-06
Ra-223	4.77E-04	4.98E-29	1.52E-02	4.73E-06	2.85E-04
Pa-231	2.75E-05	0.00E+00	2.87E-03	7.58E-06	2.99E-05

DCCs Bivalve Mollusc vs Insect

Choice of benthic model hardly affects dose due to small size and importance of internal alpha dose, external Radium

Organism	Bivalve mollusc		U-235 series		
Ratios of DCCs versus Insect larvae		sect larvae			
	Туре				
Nuclide	ExtBG	ExtLowB	IntAlpha	IntLowB	IntBG
Pb-210	0.08			1.14	1.73
Po-210	0.94		1.00		
Ra-226	0.77		0.98		2.00
Th-227	0.89		1.00		1.00
Th-230	0.40		1.00		
Th-234	0.14				2.97
U-234	0.33		1.00		
U-235	0.85		0.99		1.25
U-238	0.31		1.00		
Ac-227	0.57	3.68E+12	1.00	1.00	1.01
Ra-223	0.38	3.74E+13	1.00	1.00	2.05
Pa-231	0.79		1.00	1.00	1.20

EMRAS II Meeting, Vienna, Austria January 2011

ERICA - Key Exposure Pathway **Internal Alpha** Th-227 1% Ac-227 0% Pa-231 1% Ra-223 4% U-235 U-238 1% 15% Po-210 9% Th-234 🗖 U-238 ■ Th-234 Pb-210 0% 0% 🗆 U-234 **Th-230** Ra-226 **Pb-210** U-234 17% 🗆 U-235 **Po-210** Pa-231 Ac-227 Ra-226 🗆 Th-227 🗖 Ra-223 35% Th-230 17%

Results - Sensitive Organisms

ERICA Dose uGy/h sorted by Closest Observation SSLC

Taxon	Organism	N	Closest	Weighted
Valvata	snail	21	10	13
Sperchon	water mite	13	12	43
Eurycercus	water flea	14	13	19
Palpomyia	midge	11	13	44
Rheotanytarsus	midge	12	13	49
Epoicocladius	midge	10	18	159
Microtendipes	midge	22	21	182
Eukiefferiella	midge	16	30	56
Cricotopus	midge	11	38	59
Pisidium	clam	73	45	58

Results – Dr	aft LEL/S	SEL value	es
Dose uGy/II		ERICA	FJLZ
1 51	Closost	12	36
		10	07
	weighted	43	97
			_
SEL	Closest	175	1544
	Weighted	499	2113
		1	
PROTECT PNE	DR = 17 uGy/	'n	

Terrestrial - 1 mGy/d ~ 42 uGy/h

PROTECT PNEDR = 17 uGy/h Terrestrial - 1 mGy/d ~ 42 uGy/h

Path forward - dose results

- Enough? or analyze some more
- Bootstrap LEL/SEL values
- Document sensitivity to sample sizes
- Fit parametric distributions
- Explore / modify dose calculations

Path forward - Multivariate Analysis ?

DFA theoretically possible, but historical records not retained, everything has to be redone from scratch

					% Differer	% Difference vs Reference		
Station	# of Taxa	Abundance	Location	Year	Impact	# Taxa	Abundance	
mill effluent in this drainage								
Lake1	16	2340	Mine1	1993	reference			
Lake2	14	2917	Mine1	1993	not	-13%	25%	
Lake3	7	4346	Mine1	1993	severe	-56%	86%	
Lake4	6	1282	Mine1	1993	severe	-63%	-45%	
mill effluent in this drainage								
Lake1	31	5519	Mine1	1998	reference			
Lake2	23	1592	Mine1	1998	mild	-26%	-71%	
Lake3	5	1115	Mine1	1998	severe	-84%	-80%	
Lake5	22	4956	Mine1	1998	mild	-29%	-10%	
mine effluent in this drainage								
Lake6	20	1166	Mine1	1998	(reference))		
Lake7	20	2738	Mine1	1998	not	0%	135%	
Lake8	18	2452	Mine1	1998	not	-10%	110%	
Lake9	23	419	Mine1	1998	not	15%	-64%	

 Multiple linear regression of species richness versus all metals and dose

Richness – Excel Pivot Table

Problem will be missing data patterns, large error term from lack of other site variables

Canadian Nuclear Commiss Safety Commission de sûrete

Commission canadienne de sûreté nucléaire

Discussion

nuclearsafety.gc.ca