Third Technical Meeting (TM) on the <u>Environmental</u> <u>Modelling for RA</u>diation <u>Safety</u>

EMRAS II Intercomparison and Harmonization Project

IAEA Board Room (Room A, M Building), IAEA Headquarters, Vienna 24–28 January 2011

Overview of Legacy/NORM sites in Bayan Obo and Baotou, Inner Mongolia, China

Wu Qifan

Wuqifan@tsinghua.edu.cn

IAEA Board Room (Room A, M Building), IAEA Headquarters, Vienna 24–28 January 2011

Contents

- **1. Sites description**
- 2. Monitoring programme
- 3. dataset available for modelling
- 4. Preliminary work for next meeting

1. Sites description

Inner Mongolia BaoTou Iron and Steel Plant (Group Ltd.) or **BTISP** founded in 1954 •Bayan Obo Mining and crashing >Milling (2008, one pipe for water, another for concentrated slurry) •Baotou

Iron and Steel PlantRare earth plants (1974)

Inner Mongolia BaoTou Iron and Steel Plant (Group Ltd.) or BTISP

- 9×10^6 t/a products of iron and steel
- more than 7×10³ t/a products of oxide equivalent of REO (2006).

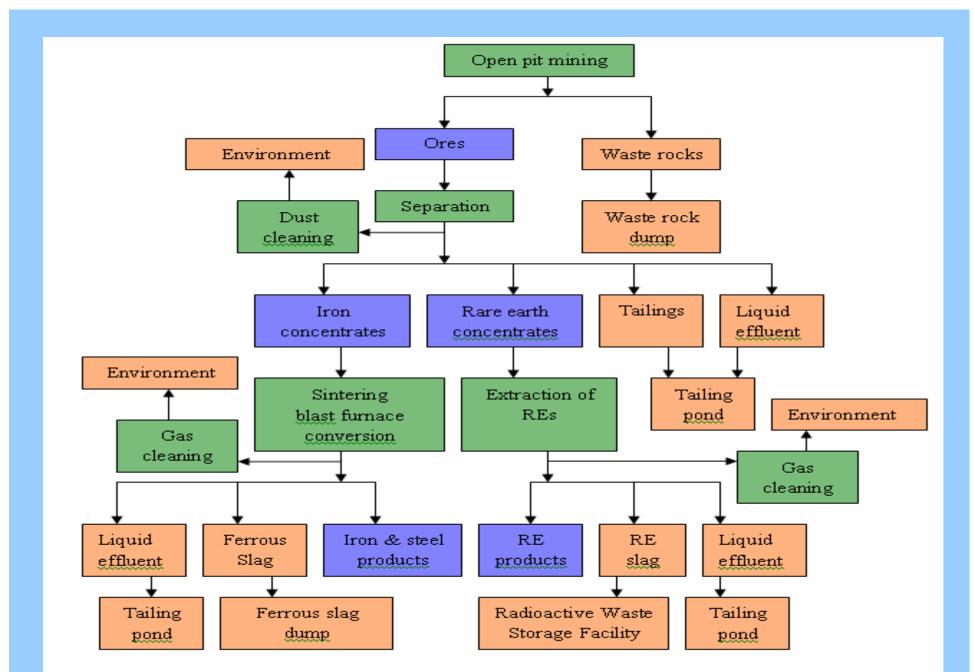
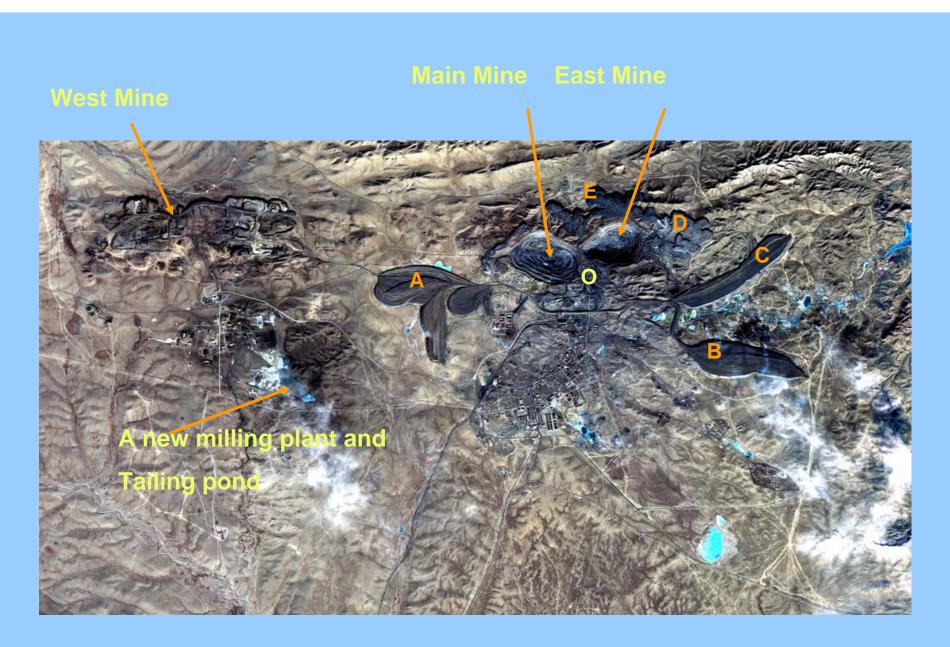



FIG. 1. Major flow chart and pollutant production of Bayan Obo ores exploitation

Bayan Obo Mining Sites Ores (O),Dumping sites(A,B,C,D,E)

Mining sites in Bayan Obo

•Main Mine and East Mine

open pit mines

 $1520 \times 1080 m^2$ for Main Mine, $1400 \times 1020 m^2$ for East Mine

About 10×10^6 t/a of ores are recently mined About 276×10^6 t of ores had been mined by the end of 2006.

Mining sites in Bayan Obo

•West Mine

a big open pit mine, started in May, 2006.

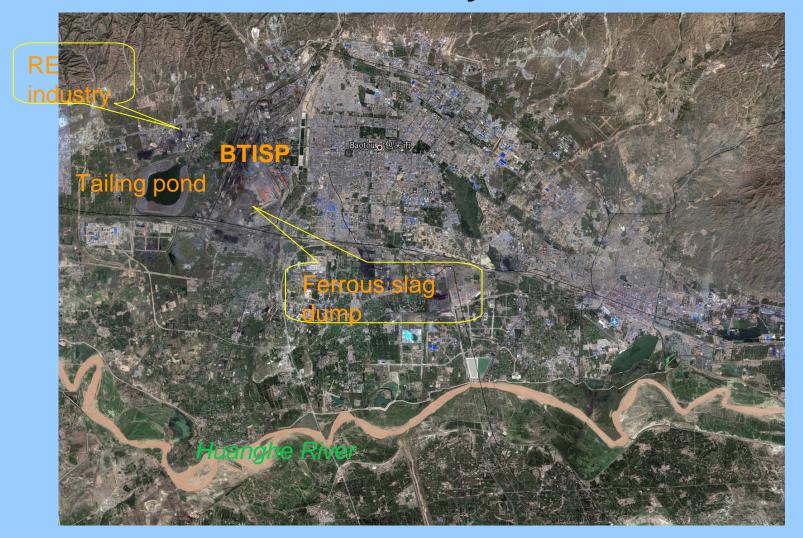
4,600 m in length 1,000 m to 1,200 m in width. The present production of ores is expected to be 3×10^6 t/a,

Mining sites in Bayan Obo

waste rock dumps

About 10×10^6 t of waste rocks are produced annually.

Total amount of waste rocks is about $560 \times 10^6 \ t$, piled up in the waste rock dumps.



A new milling plant and tailing pond has operated since 2005.

The BTISP and Baotou City

Refining iron and steel

RE Processing

RE oxides, RE chlorides,

RE carbonates and alloy products

Tailings , 149 $\times10^{6}$ t , 2006 an area of 11km² 6.55 $\times10^{6}$ t/a with 0.048% Th

ferrous slag, 3.55×106 t/a 1km² acidic process slag $,60 \times 10^3$ t/a , gross α , n×10⁵Bq/kg, in Radioactive Waste Storage Facility

about 1450,000 t/a of ferrous slag has been used to make cement, bricks and other building products

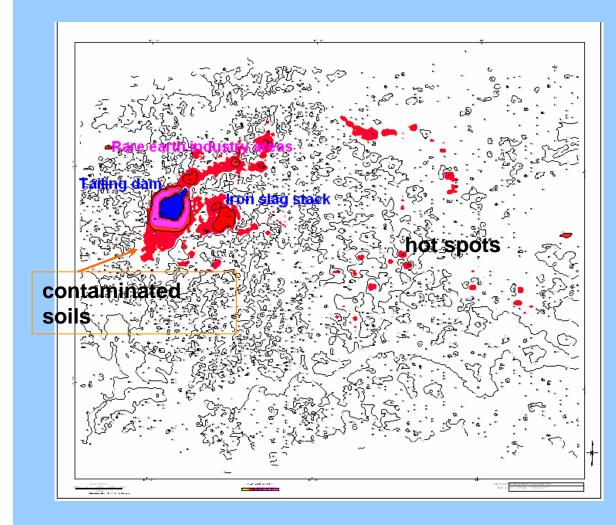
2. Monitoring programme

2. Monitoring programme

Regional Radiological data

Aero survey and ground measurements Work was done during 2006-2009

Monitoring data

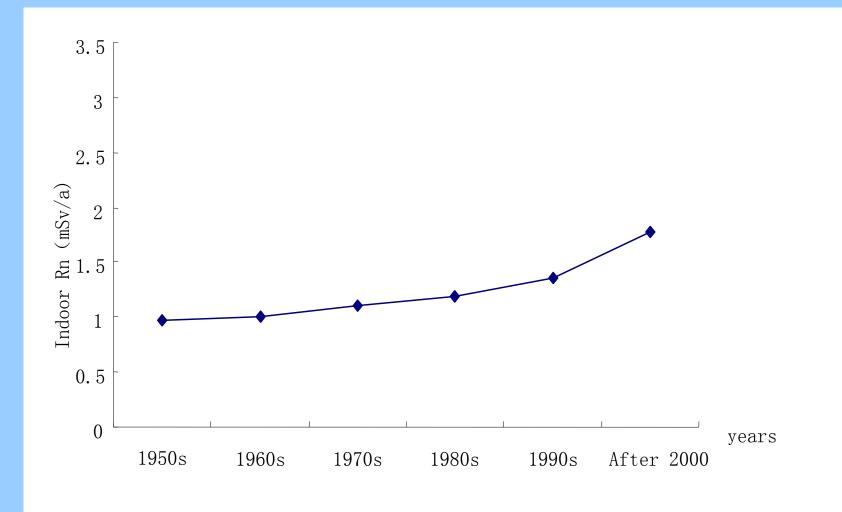

The Monitoring Data of Baotou Radioactive Environmental Quality, required by regulation, and carried out by INNER MONGOLIA RADIOACTIVE ENVIRONMENT MANAGEMENT INSTITUTE

sites with elevated levels of radioactivity BG: 85nGy/h HBG:200—800nGy/h (about 55.4 Km²) Mining sites and Ores (O):600 to 2000nGy/h Dumping sites(A,B,C,D,E): 400 to 800nGy/h 1200nGy/h

网名内蒙古白云鄂博地区数书能透明复社众星程

hot spots (P1-5): 500-2000nGy/h

sites with elevated levels of radioactivity



BG: 65nGy/h (50Bq/Kg for Th) Tailing pond: 650-1200 nGy/ h (11 Km²) Ferrous slag dump: 500-1200 nGy/ h The contaminated soil area:

The contaminated soil area: 85-150nGy/h 80-200Bq/kg for Th in the upper layer of 10 -20cm. 32 hot spots : 120-1200nGy/h

			Lond officiale	and the second s	
	The LEAD				
		Same I	A PROPERTY OF THE PARTY OF		Cart B
HH	UIII				
	PAEC	PAEC of	Gamma		
Indoor	PAEC of ²²² Rn progeny	PAEC of ²²⁰ Rn progeny	Gamma dose rate		
Indoor radiation	of ²²² Rn	²²⁰ Rn			
	of ²²² Rn progeny	²²⁰ Rn progeny	dose rate		

BNS-the normal buildings not containing slag

Indoor radiation of buildings built in different years

3. dataset available for modelling

Ferrous slag produced in defferent years

years	²²⁶ Ra Bq/kg	²³² Th Bq/kg	⁴⁰ K Bq/kg	I _{Ra}	Ι _γ
before1990	95.1±24.5	2072.6±254.1	$236.2\pm75.$	0.48	8.28
1992	82.9±13.3	1618.2±194.2	341.0 ² ±64.	0.41	6.53
1993	81.9±12.3	1233.6±148.0	274.9±55.	0.41	5.03
1993	101.9±16.3	1327.0±159.2	$187.2 \pm 18.$ $132.2 \pm 15.$	0.51	5.42
1996	105.8±15.3	612.0±108.2	$132.2 \pm 15.$	0.53	2.67
2003	90.9±6.3	588.1±41.3	112.9±7.9	0.45	2.53
2005	119.5±8.3	529.2±16.3	154.7 ± 6.9	0.60	2.40
2006	106.1±9.6	536.6 ± 24.3	169.3±16.	0.53	2.39
2007	120.6 ± 20.6	516.4±66.9	$211.3 \pm 41.$ 1	0.60	2.36
2008	75.9±10.8	426.6±52.2	$153.6 \pm 27.$ 8	0.38	1.88

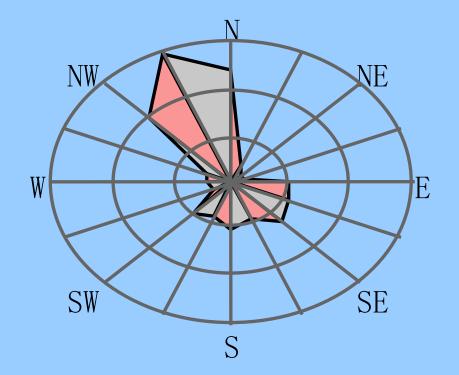
Building material in Baotou

products	²³² Th Bq/kg	²²⁶ Ra Bq/kg	⁴⁰ K Bq/kg	I _{Ra}	I _r
Brick1 factory1	180±17.2	45 ± 3.4	210±24.1	0.23	1.18
Brick2 factory1	212±22.5	51±2.5	123±17.8	0.25	0.98
Cement1 factory 2	39.0±2.7	35.5±2.8	122±9.0	0.18	0.27
Cement2 factory 2	209.8 ± 12.1	58.9±2.7	192.2 ± 12.3	0.29	1.01
Cement3 factory 2	240.1 ± 21.7	24.6±1.2	371.9 ± 12.4	0.12	1.08
Cement factory3	330.9 ± 32.4	83.6±8.7	429.2 ± 32.7	0.42	1.60
Brick factory4	192±12.6	56±2.1	402 ± 32.1	0.28	0.99

Typical ranges of radiation level in work places and environment

	*Gamma dose rate	**PAEC of ²²⁰ Rn progeny
Type of samples	nGy/h	Mev/l
Bayan Obo background	85	
Mining sites	600-2000	
Dumping sites	400 to 800	226.1
Work places in plants	300-500	
Bayan Obo City area	100 -150, average 121	199.4
Background in <u>Baotou</u>	65	
Work places in plants	Mostly,300-500;	25-500 (average 126)
	Some,500-1000,max 1518	
Taillings	650-1200	75.4-590.1 (average 243)
RE slag pile	1500-4000	
Contaminated soil in	85-150	
Baotou		
Baotou City	Background	69-125.6 (average 94)

*PAG- data after the Programme of Aero survey and ground measurements **MIMRE- data after the results of Monitoring by Inner Mongolia Radioactive Environment Management Institute


Typical ranges of radionuclide concentration in environmental materials

Type of s	amples	units	226 Ra	²³² Th	²²⁸ Ra	
Soil background in Bayan Obo		Bq/kg	33	46		PAG
tailings			about 1600		PAG	
ferrous s	lag	Bq/kg		0.5-1.6×10 ³		PAG
RE slag		Bq/kg		2.0-3.8×10 ³		PAG
contamin	nated soil(upper layer	Bq/kg		80-120		PAG
10 cm) ir	n <u>Bayan</u>					
dust	crushing and sorting	Bq/kg		1.3-1.9×10 ³	1.2-2.0×10 ³	MTMDE
powder	plant					MIMRE
from	sintered plant	<u>Bq</u> /kg		0.5-1.6×10 ²	1.2-2.0×10 ²	
	steel smelting plant	<u>Bq</u> /kg		$0.2-1.2 \times 10^{2}$	$0.2 - 1.1 \times 10^{2}$	
exhaust g	gas from RE plant	10 ⁻²		3.2		MIMRE
		Bq m ⁻³				MININE
Soil back	Soil background in Baotou		33	36		PAG
contamii	nated soil(upper layer	<u>Bq</u> /kg		80-200,or>400		PAG
20 cm) ir	Baotou			near tailing pond		
the second		c .		, ,		

*PAG- data after the Programme of Aero survey and ground measurements

₩#MIMRE- data after the results of Monitoring by Inner Mongolia Radioactive Environment Management Institute

Meteorology

Wind rose

Sea- son		N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	С
	fre q.	6.10	1.30	1.20	1.30	7.00	9.80	12.10	6.00	6.50	5.00	3.00	1.30	1.00	0.60	5.00	7.00	15. 6
S	spe ed	2.70	3.30	1.60	3.50	2.40	2.60	2.70	3.40	3.00	2.30	2.40	2.70	1.80	4.50	3.00	3.10	
	fre q.	10.00	1.10	1.00	0.80	1.80	3.00	3.50	2.60	5.00	3.10	5.20	3.80	3.80	5.00	12.60	15.00	23. 30
SP	spe ed	7.20	4.00	2.00	2.00	2.20	4.80	4.05	3.20	4.10	4.80	4.00	7.20	5.20	6.40	5.60	5.90	
	fre q.	19.50	3.00	2.50	0.60	2.80	2.70	3.00	2.50	3.20	3.10	4.80	2.50	3.00	10.00	15.00	19.00	19. 10
F	spe ed	4.00	2.35	2.80	2.40	2.50	2.40	4.00	4.40	4.40	3.60	3.60	2.40	4.20	4.00	4.60	4.30	
	fre q.	11.00	0.80	0.05	0.00	1.70	2.30	1.70	4.00	5.00	3.00	3.00	1.20	1.70	3.00	12.00	20.7	27. 40
W	spe ed	2.50	2.00	2.20	1.10	1.20	1.90	1.90	1.90	2.00	2.00	1.40	1.20	2.00	2.00	2.90	3.00	
0001	fre q.	11.90	2.00	1.00	1.00	4.60	5.00	5.70	4.20	4.90	3.80	4.50	1.80	2.00	2.20	9.60	14.70	21. 30
annu al	spe ed	3.50	2.60	2.20	2.90	2.40	2.70	2.90	2.90	2.90	2.70	2.60	3.90	3.20	3.40	3.40	3.50	

Routine monitoring data

Work places
Environment
Water
Aerosol (dust)
Solid matterials

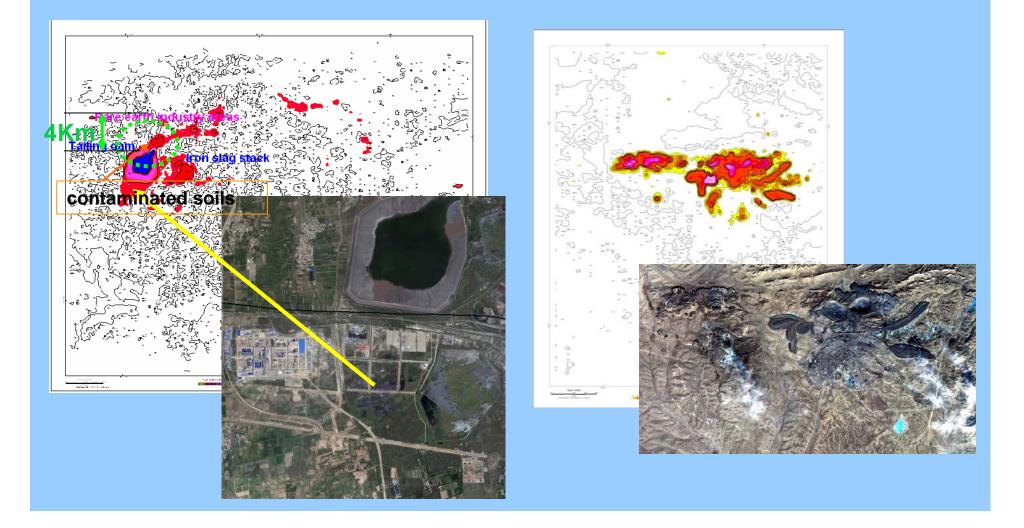
•²²²Rn/²²⁰Rn

4. Possible scenarios for modelling

Case1 Point sources

Large quantity of ash releases from stacks

Refining iron and steel



4. Possible scenarios for modelling

Case2 Area sources

Contaminated areas(onsite/offsite)

Case3 indoor Rn

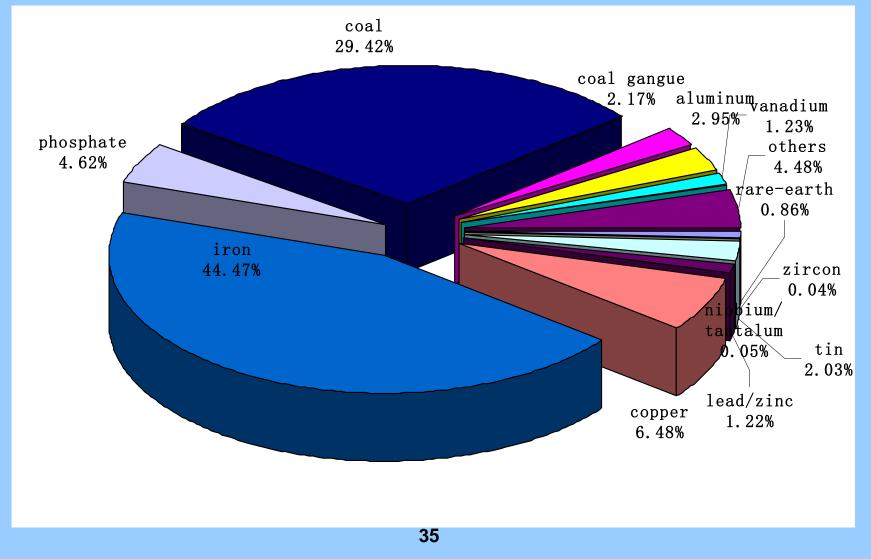
Some other cases: about •Coal industries •Phosphate industries

Which code(s) should be used?

Models used							
Scenario	Detailed Model	Screening Model					
Point source	PC-CREAM	CROM COMPLY					
Area source	RESRAD-OFFSITE DOSDIM (+ HYDRUS) AMBER	PRESTO					
Area source plus river	RESRAD-OFFSITE (AMBER)						

After the material of Second Working Group Meeting, 2009.9.23

Models available within group


- CROM
- PC-CREAM
- RESRAD-OFFSITE
- PRESTO
- COMPLY
- (Radon code) exhalation into buildings

After the material of Second Working Group Meeting, 2009.9.23

CROM – Juan Carlos RESRAD – Charley, Dr. Sunita Kamboj ERICA Tool – Justin ReCLAIM – Kremena

2011 programmes

NORM solid waste distribution in China

2011 new programmes

Coal industries
Phosphate industries

