Biota Modelling Working Group (WG4)

'Exercise 3'

Purpose: Compare unweighted internal and external absorbed dose rates assuming 1 Bq kg⁻¹ in organism & 1 Bq unit⁻¹ media respectively Radionuclides considered – those from ICRP 'RAP' report (+⁵⁵Fe)

³H, ¹⁴C, ³²P, ³³P, ³⁵S, ³⁶Cl, ⁴⁰K, ⁴⁵Ca, ⁵¹Cr, ⁵⁴Mn, ⁵⁵Fe, ⁵⁷Co, ⁵⁸Co, ⁶⁰Co, ⁵⁹Ni, ⁶³Ni, ⁶⁵Zn, ⁷⁵Se, ⁷⁹Se, ⁸⁹Sr, ⁹⁰Sr, ⁹⁵Zr, ⁹⁴Nb, ⁹⁵Nb, ⁹⁹Tc, ¹⁰³Ru, ¹⁰⁶Ru, ^{110m}Ag, ¹⁰⁹Cd, ¹²⁴Sb, ¹²⁵Sb, ^{129m}Te, ¹³²Te, ¹²⁵I, ¹²⁹I, ¹³¹I, ¹³⁴Cs, ¹³⁵Cs, ¹³⁶Cs, ¹³⁷Cs, ¹⁴⁰Ba, ¹⁴⁰La, ¹⁴¹Ce, ¹⁴⁴Ce, ¹⁵²Eu, ¹⁵⁴Eu, ¹⁵⁵Eu, ¹⁹²Ir, ²¹⁰Pb, ²¹⁰Po, ²²⁶Ra, ²²⁸Ra, ²²⁷Th, ²²⁸Th, ²²⁹Th, ²³¹Th, ²³²Th, ²³⁴Th, ²³¹Pa, ²³³U, ²³⁴U, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, ²⁴¹Pu, ²⁴¹Am, ²⁴²Cm, ²⁴³Cm, ²⁴⁴Cm, ²⁵²Cf

Did not include noble gases (Ar, Kr Rn) which had been requested by some group members

Exercise 3

Organism geometries taken from information supplied for ICRP RAPs to BWG Exercise 1:

Organism	a (cm)	b (cm)	c (cm)	Mass (g)	S (cm²)	S/V (cm⁻¹)	Ecosystem
Duck	30	10	8	1.3E+03	6.3E+02	5.0E-01	Freshwater
Frog Salmonid	8	3	2.5	3.1E+01	5.2E+01	1.7E+00	Freshwater
egg	0.25	0.25	0.25	8.2E-03	2.0E-01	2.4E+01	Freshwater
Rat Earthworm	20	6	5	3.1E+02	2.5E+02	7.9E-01	Terrestrial
(elongated)	10	1	1	5.2E+00	2.5E+01	4.7E+00	Terrestrial

Hmmmm –

Flatfish egg 0.2 0.2 0.2 4.19x10⁻⁶ kg

Exercise 3

Exposure scenarios results requested for:

Organism Duck Frog Salmonid	Underground	Shore (soil surface) Y Y	Benthic interface	Water Y Y
egg			Y	Y
Rat Earthworm (elongated)	Underground Y (depth 25 cm) Y (depth 25 cm)	Soil surface Y Y		

Model	Participant
RESRAD-BIOTA ['basics']	Sunita Kamboj (ANL, USA)
RESRAD-BIOTA [available software]	Mike Wood (Liverpool, UK)
EA R&D128 ['basics']	Jordi Vives i Battle (WSC, UK)
EA R&D128 [available spreadsheets]	Laura Newsome (EA, UK)
EA R&D128 [analogue approach]	Laura Newsome (EA, UK)
EDEN	Karine Beaugelin-Seiller (IRSN, France)
EPIC DOSES3D	Ali Hosseini (NRPA, Norway)
ICRP RAP report	Nick Beresford (CEH, UK)
K-Biota	Dong-Kwon Keum (KAERI, Korea)
SUJB	Jan Horyna (SUJB)
VIC	Susumu Ryufuku (VIC)
DosDimEco	Geert Olyslaegers (SCK·CEN, Belgium)
ERICA [default]	Laura Newsome (EA, UK)/Hildegarde Vandenhove (SCK·CEN, Belgium)
ERICA [create organism]	Mat Johansen (ANSTO, Australia)

With some exceptions – approaches are giving similar estimates of dose. Some checks to be made of inputs.

More variation external exposure & small geometry (Flatfish egg)

Plan towards submitting a paper (Radiation Env. Biophysics) circa April

Beaverlodge uranium mine (CNSC)

Beaverlodge

- Sediment, water & fish data available over a number of years [enables model-data comparison]
- Reduced invertebrate populations/effects in fish/multi-contaminants – interaction with WG6
- Provide informed opinion on real issue

• <u>Phase 1</u>:

- Model-data comparison for fish (Po, Ra)

- Model: model benthic invertebrates & fish

Po-210 fish

Beaverlodge - future

- Confirm fish predictions
- Estimate Canadian CR values
 - use these in future model runs (from database being collated for WP5)
- Concentrate on sites with data/of interest
 - Estimate dose
 - Put into context against various dose rate benchmarks (summer workshop)
 - Interaction WP6

Little Forest Burial Ground (ANSTO)

- Waste trenches (1960's)
- Radionuclides include: U, ³H, Pu Am, Cs, Sr, Co

Little Forest Burial Ground (ANSTO)

- Different range of species present than considered in assessment
- Radionuclides include: U, ³H, Pu Am, Cs, Sr, Co
- Scenario presented here
 - available c. 1 month
 - review results summer workshop
- Focused participation

Wetland (Stockholm Univ.)

- Potential approach to scenario presented
- Will be worked up and presented to group in summer 2010

Screening tiers

Example - England & Wales
'Habitats' [Natura2000]
assessments

•Assessed 715 radioactive discharge authorisations

 600 authorisations did not require assessment more detailed than initial conservative level

•Screening level to enable sites of negligible concern to be identified and removed from need for further assessment – with a high degree of

But considerable variation (2-5 orders of magnitude) in screening tier predictions

