EMRAS – Theme 2 Remediation of Sites with Radioactive Residues

Urban Remediation Working Group

5-9 November 2007 Vienna

Goal of the Working Group

To provide an opportunity to compare and test modeling approaches and models that describe the behaviour of radionuclides in an urban setting

- Prediction of changes in radionuclide concentrations and dose rates over time
- Prediction of the reduction in radionuclide concentrations and dose rates expected to result from specific countermeasures or remediation efforts

Progress of Working Group

- 8th WG Meeting in April 2007
- Summary of existing models and modeling approaches
- Modeling exercises for selected situations
 - Widespread contamination (Chernobyl)
 Localized contamination (RDD event)
- Preliminary conclusions
- Draft Working Group report

Summary of existing models and modeling approaches

- Literature survey of models and modeling approaches
- Sources of information on countermeasures
- Considerations for selection of appropriate parameter values

Modeling exercises for selected situations

 With and without application of countermeasures

- Designed to permit comparison of model predictions
 - With other model predictions
 - With measurements when available

First modeling exercise: Pripyat scenario

- Chernobyl fallout
 - Town was evacuated, remained largely uninhabited
- Time series of dose rates and contaminant concentrations
- Indoor and outdoor locations
- With and without countermeasures
- Some measurements available

Dose rate

% contribution to dose rate

Predicted cumulative doses, with effects of countermeasures

Second modeling exercise: Radiological dispersal device (RDD)

- Hypothetical release of radioactive material
 5 kg conventional explosion, ground level
 50 TBq of Cs-137 in powder form
 - 1 July of Year 0
 - Dry weather, wind 5 m/s from the west
- Simulated explosion event (Hotspot)
- Further simulation (IAMM) to obtain values for reference surface contamination at selected sites
- With and without countermeasures

Site of hypothetical event

Contours of reference surface contamination (simulated)

1, 2, 3, and 4 MBq/m²

RDD location and nearby buildings

Building 1, outside

Contamination density

Dose rate

% contribution to dose rate

Building 1, inside (ground floor)

Dose rate

% contribution to dose rate

Building 1, ground floor occupational exposure

Annual dose

Building 1, ground floor occupational exposure, with effects of **countermeasures**

Preliminary conclusions from the Urban Remediation Working Group

- Importance of looking at each contributing surface and radionuclide
 - Not just the total dose rate
 - Different combinations of surfaces may give similar answers
- Range of modeling results gives an idea of the uncertainty in making predictions
 - Different assumptions or parameter values
 - Different interpretations of input information
 - Various sources of uncertainty
- Need for a variety of test data
 - Many types of data are not available
- Challenges of this kind and scale of modeling
 - Very location-specific
 - Many possible situations and combinations

Plans for current meeting

- Presentation and discussion of revised model results since the April 2007 meeting
- Discussion of Working Group report
 - Models and modeling approaches
 - Results of both modeling exercises
 - Conclusions and recommendations
- Discussion of publication plans
- Discussion of future plans
 - Next steps to improving the modeling of urban contamination