

THEME 1: Radioactive Release Assessment

Working Group 3 (IWG)

The Chernobyl I-131 release:

models' validation and assessment of the countermeasures effectiveness

Pawel Krajewski

EMRAS Iodine Working Group Leader

1

EMRAS Iodine Working Group

main targets of IWG

check models applicability to evaluation of countermeasures effectiveness

Countermeasures:

- administration of stable iodine
- restriction of cows pasturing
- Imitation of fresh milk consumption

uncertainty ?, limitation ?, requested input data ?

EMRAS Iodine Working Group

environmental modelling exercises on radioiodine

- to test and compare models' predictions with real environmental data
- to intercompare modelling approaches and model predictions among several assessors

EMRAS Iodine Working Group

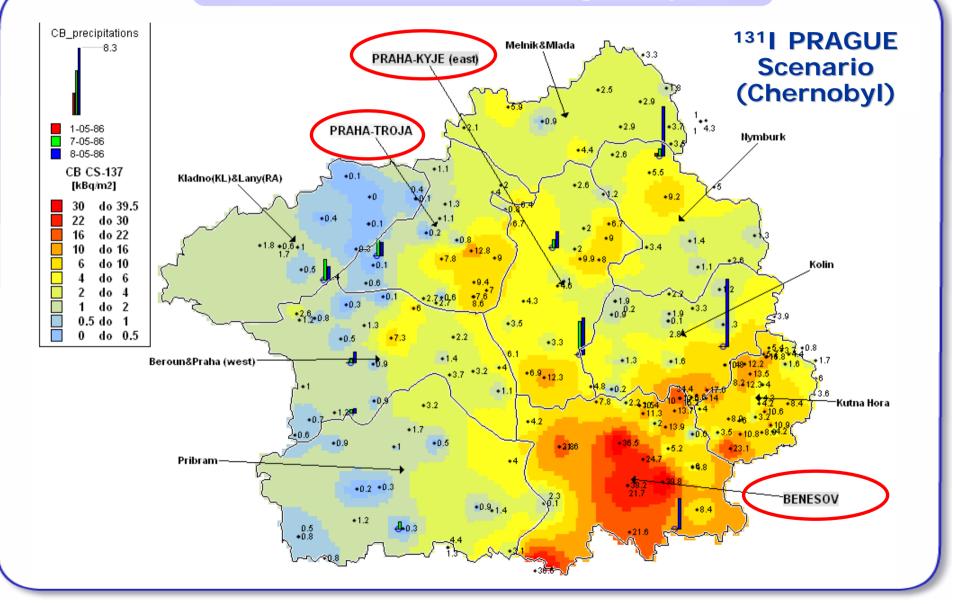
completed tasks

Final evaluation of ¹³¹I WARSAW Scenario

predictions of 6 modellers

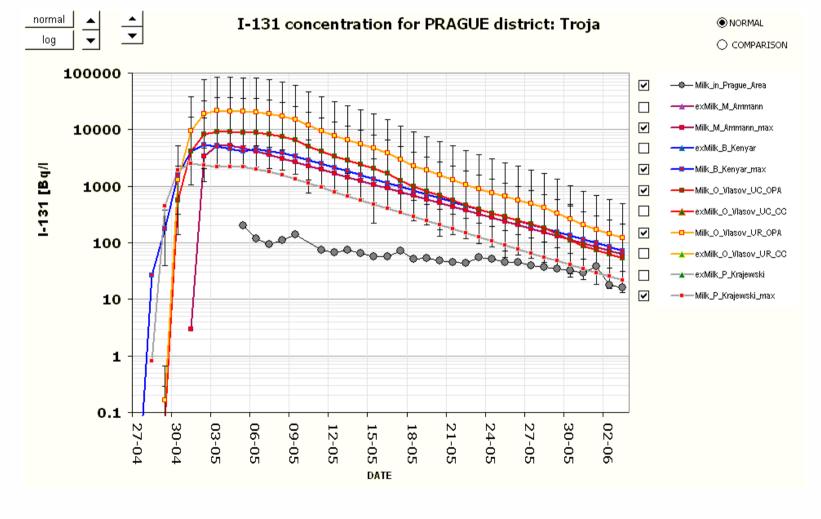
Final description of ¹³¹I PRAGUE Scenario

expected predictions of 7 modellers

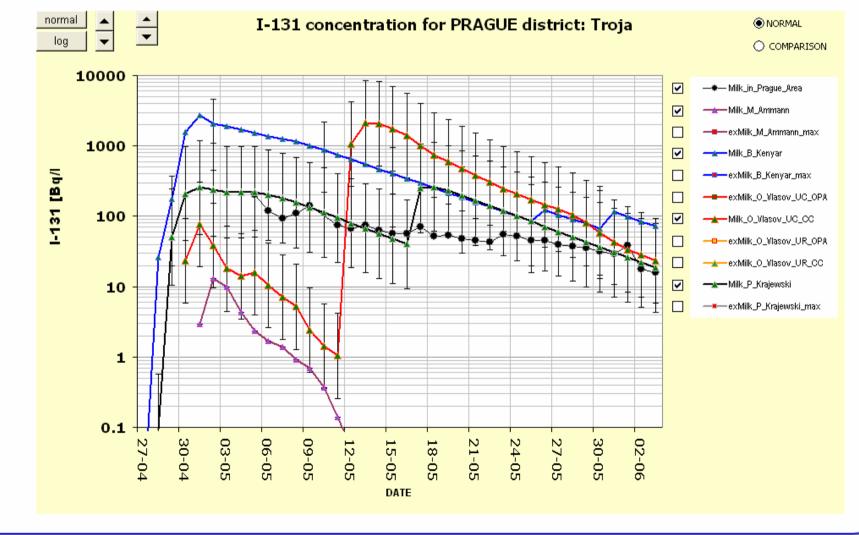

EMRAS Iodine Working Group

2nd run of predictions for ¹³¹I PRAGUE Scenario expected data from 6-7 modellers

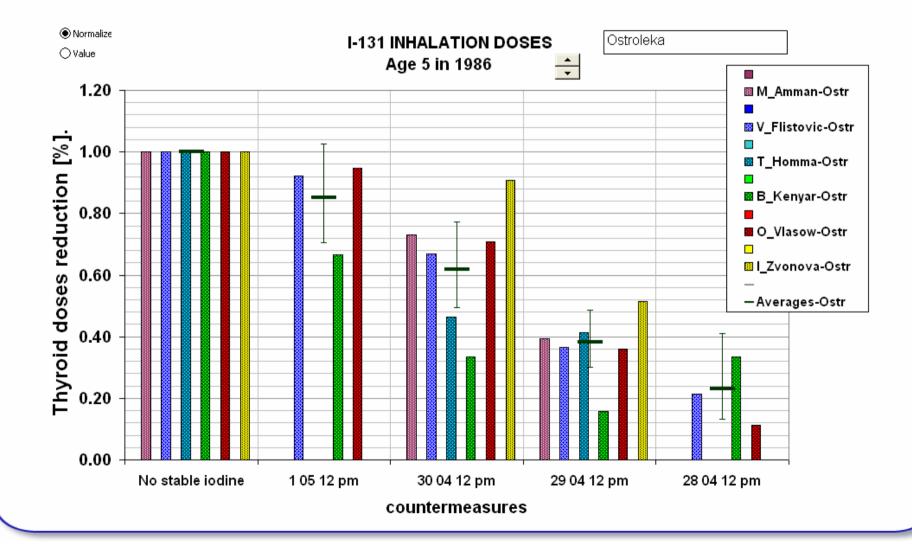
UniVes	B.Kanyár	Hungary	University of Pannonia (former University of Veszprém)
Ecosys-87	M. Ammann	Finland	Radiation & Nuclear Safety Authority (STUK)
CLIMRAD	O. Vlasov	Russian Federation	Medical Radiological Research Center
CLRP	P. Krajewski	Poland	Central Laboratory for Radiological Protection
OSCAAR	T. Homma	Japan	Japan Atomic Energy Agency (JAEA)
IRH-model	I. Zvonova	Russian Federation	Institute of Radiation Hygiene
SPADE	P. Kennedy	UK	Food Standard Agency


EMRAS Iodine Working Group

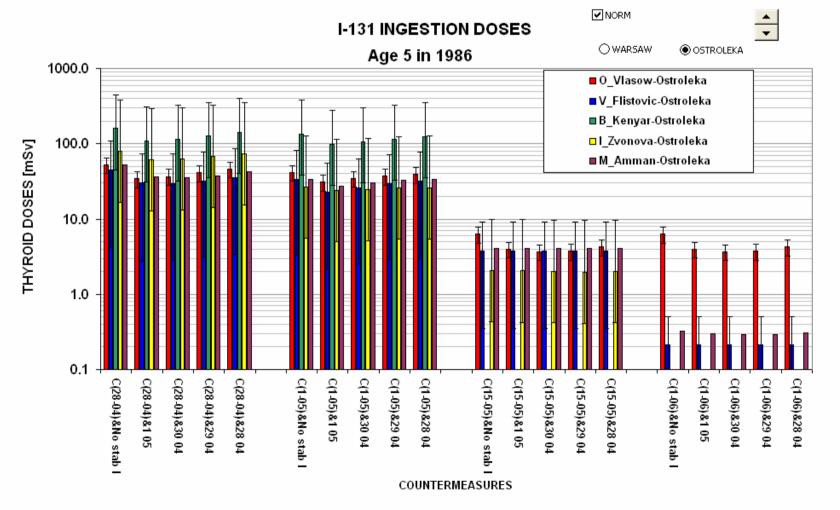
EMRAS Iodine Working Group


¹³¹I PRAGUE Scenario (Chernobyl)

EMRAS Iodine Working Group


¹³¹I PRAGUE Scenario (Chernobyl)

EMRAS Iodine Working Group


final evaluation of ¹³¹I WARSAW Scenario

EMRAS Iodine Working Group

final evaluation of ¹³¹I WARSAW Scenario

EMRAS Iodine Working Group

¹³¹I PRAGUE Scenario (Chernobyl)

important issues:

- I. Lack of information about:
 - cows feeding practices in transitional period (winter-summer)
 - spatio -temporal monitoring data on : air concentrations, iodine forms and deposition.

is typical in the real accidental conditions and was a major source of discrepancies between predicted and observed ¹³¹I in milk data,

2. during the early period of emergency the monitoring data on air concentration, iodine form, deposition density as well as comprehensive data on milk contamination are required for improvement of reliability of thyroid exposures model predictions

EMRAS Iodine Working Group

¹³¹I PRAGUE Scenario (Chernobyl)

important issues (cont.):

- 3. feeding cow practices applied in Prague region (e.g. keeping cows in cowsheds and using not contaminated fodder) might reduced integrated ¹³¹I concentration in milk by factor about 5 (4-10) comparing with milk originated from cows pastured in open area,
- 4. prevention of milk contamination by stabling cows without adding fresh contaminated by ¹³¹I grass is an effective countermeasure,
- 5. stable iodine intake is useful measure against inhalation exposure,

EMRAS Iodine Working Group

IWG contribution to the **TRS-364 GROUP**

comments and remarks to the TRS-364 TECDOC with respect of radioiodine

model of grass interception

in a case of mixed (dry&wet) radioiodine fallout with three forms of radioiodine: aerosol bound, elemental I₂, organic CH₃I

iodine milk transfer factor

cow iodine metabolic model, uncertainty range, dependence of milk transfer factor on cows diet and cow's milk productivity

EMRAS Iodine Working Group

MILESTONES PLANNED

26 January 2007

1 2nd and last run of predictions for Prague Scenario

I6 - 28 February 2007

i disclosing data on ¹³¹I thyroid contents of Prague inhabitants

ilevaluation of Prague Scenario (report and data sent out to participants)

30 March 2007

ideadline for comments, remarks

EMRAS Iodine Working Group

MILESTONES PLANNED

23–27 April 2007

International Conference on Environmental Radioactivity: From Measurements and Assessments to Regulation, Vienna

IWG a contributed paper to the conference Validation of dosimetry models and assessment of the countermeasures effectiveness using data from Chernobyl ¹³¹I releases

30 May 2007

completed draft of IWG TECDOC

full set of 3 Scenarios (input data, output data, evaluations, recommendations)

EMRAS Iodine Working Group

MILESTONES PLANNED

25 – 29 June 2007

IWG Working Group meeting (2 options)

- Institute of Radiation Hygiene of the Ministry of Public Health St. Petersburg, Russian Federation
- 2. at the IAEA Headquarters, Vienna

main target

discussion and review of the draft of IWG TECDOC

5th Combined Meetings of EMRAS

draft of IWG TECDOC

Thanks for your attention

Pawel Krajewski