MADAGASCAR EXPERIENCE IN MANAGEMENT OF CONSEQUENCES OF INCIDENT WITH CONTAMINATED SCRAP METAL

M.J. Ramanandraibe, Raoelina Andriambololona, H.F. Randriantseheno, J.L.R. Zafimanjato

Madagascar-Institut National des Sciences et Techniques Nucléaires (Madagascar-I.N.S.T.N)

CONTENTS

- INTRODUCTION
- NATIONAL REGULATION IN RADIATION PROTECTION
- RADIATION DETECTION EQUIPMENT
- DESCRIPTION OF THE INCIDENT
- CONSEQUENCES AND MANAGEMENT OF THE INCIDENT
- CONCLUSION AND LESSONS LEARNED

- Use of radiation techniques in Madagascar is subject to specific national regulatory systems.
- Any use, importation and exportation of radioactive sources must be authorized by the Regulatory Authority.

- Law n° 97-041 on protection against harmful effects of ionizing radiation and radioactive waste management in Madagascar was promulgated on 2 January 1998.
- Four decrees to implement the law approved by the Government in 2002.

- Institut National des Sciences et Techniques Nucléaires (Madagascar-INSTN) is ensuring the functions of the Technical Body of the Regulatory Authority.
- Customs services are working in collaboration with Madagascar-I.N.S.T.N to ensure that the import and export of radiation sources are properly regulated.

INTRODUCTION

 Cross border workers and Custom officers were trained by Madagascar-I.N.S.T.N on radiological risks, protection techniques and for identifying radioactive packages.

 Information exchange between Customs and the Regulatory Body.

incident with contaminated scrap metal

INTRODUCTION

• Customs Administration requires authorization issued by the Regulatory Authority for any import, export of and transportation of radioactive sources.

• Regulatory Body notifies the Customs Administration of any changes to regulations, or of any other decision taken by the Regulatory Body, that has a bearing on the import, export and storage or transport of radiation sources.

- In case of goods suspected or found to be contained with radioactive material, the role of Customs Officers are:
 - to isolate the goods in a secure area
 - to inform the Regulatory Body

incident with contaminated scrap metal

INTRODUCTION

 In May 2007, two containers containing scrap metal to be exported to India were identified as contaminated with radionuclides at the international seaport of Madagascar.

• Level of radiation around and at the surface of the containers was relatively high.

- Management of consequences of this incident in order to guarantee the workers protection and the environment safety.
- Control on presence of radioactive materials followed by identification of their nature, recuperation of radioactive materials from the containers and interim disposal of radioactive waste could be performed.

incident with contaminated scrap metal

- Following the publication of the ICRP 60 and the International Basic Safety Standards for radiation protection against ionising Radiation and for the Safety of Radiation Sources (BSS, IAEA Safety Series n° 115), Madagascar has prepared a set of new regulation based on these standards.
- Law n° 97-041 on protection against harmful effects of ionizing radiation and radioactive waste management in Madagascar was promulgated on 2 January 1998.

incident with contaminated scrap metal

- Decree n° 2002-569 on 4th July 2002 related to designation, roles and functions of the Regulatory Body.
- Decree n° 2002-1199 on 7th October 2002 related to the basic principles of protection against ionising radiation.

incident with contaminated scrap metal

- Decree n° 2002-1274 on 16th October 2002 related to the basic principles of radioactive waste management.
- Decree n° 2002-1161 on 9th October 2002 related to the possession and use of ionising radiation sources in medical field.

incident with contaminated scrap metal

- Regulation on Safe transport of radioactive materials is based on current IAEA Regulation.
- Any use, possession and transportation of radioactive sources is subject to an authorization issued by the Regulatory Authority.

incident with contaminated scrap metal

RADIATION DETECTION EQUIPMENT

CONTAINER SCANNER (installed in 2006)

RADIATION DETECTION EQUIPMENT

RADIATION METER THERMO ESM FH 40G-L10 Ω

RADIATION DETECTION EQUIPMENT

GRAETZ DOSE RATE METER X5 DE

RADIATION DETECTION EQUIPMENT

PORTABLE SPECTROMETER EXPLORANIUM GR-135 IDENTIFIER

incident with contaminated scrap metal

DESCRIPTION OF THE INCIDENT

• May 2007: customs officers at the international seaport detected an abnormal radiation level while two containers containing scrap metal waste to be exported to India were passed through the container scanner: alarm indicating a "HIGH RADIATION".

 Radiation level around the containers checked by the cross border workers: radiation level is significant.

incident with contaminated scrap metal

DESCRIPTION OF THE INCIDENT

• As the Technical Body of the Regulatory Authority, Madagascar-I.N.ST.N (Technical Body of the Regulatory Authority) immediately informed on this incident.

Exporter informed on the event.

incident with contaminated scrap metal

DESCRIPTION OF THE INCIDENT

- Dose rate measurement around and at the surface container were carried by radiation protection and waste management team of Madagascar-I.NS.T.N.
- Maximum dose rate found near the bottom of the container.
- Confirmation that radiation level is widely higher than acceptable limit for transportation of excepted package.

incident with contaminated scrap metal

DESCRIPTION OF THE INCIDENT

• Radionuclides identified with the portable spectrometer: Ra-226 source.

• Two containers containing radioactive materials could not be shipped and isolated in a secure area at the seaport.

incident with contaminated scrap metal

CONSEQUENCES AND MANAGEMENT OF THE INCIDENT

- June 2007: radioactive materials (lightning conductor with
 - Ra-226) isolated from the containers.
- The root causes of this incident were the lack of recognition of materials that may be radioactive by those involved in collecting, handling and exporting scrap metal.
- The origin of the scrap metal containing radio

CONSEQUENCES AND MANAGEMENT OF THE INCIDENT

Table 1: Radiation level at the container surface

Container identification	PCIU: 387 265/0	PCIU 379 046/5
Radioactive nuclide detected	Ra-226	Ra-226
Maximum dose rate at container surface (μSv/h)	23	40
Acceptable limit for transportation of excepted package (μSv/h)	5	5

Dose measurement at the container surface

incident with contaminated scrap metal

CONSEQUENCES AND MANAGEMENT OF THE INCIDENT

- There were no radiological consequences to either people or the environment.
- However, there is a possibility for financial damage as the containers could not be shipped with radioactive materials.
- Those dealing with collecting and charging goods into the containers might have been exposed to radiation but level of received dose is unknown.

incident with contaminated scrap metal

CONSEQUENCES AND MANAGEMENT OF THE INCIDENT

Recommendations given by MADAGASCAR-I.N.S.T.N

• The contaminated scrap metal located at the container bottom should be removed before exporting the scrap metal.

 After removing the radioactive material, contamination checking should be performed before shipment.

incident with contaminated scrap metal

CONSEQUENCES AND MANAGEMENT OF THE INCIDENT

Table 2: Radiation level before and after removing the radioactive material

Container Identification	Dose rate at the container surface before* (µSv/h)	Radionuclide detected	Dose rate at the container surface after** (µSv/h)	Acceptable limit (μSv/h)
PCIU 379 046/5	40	Ra-226	0.09	5
PCIU 387 265/0	2 3	Ra-226	0.08	5

^{*} Before removing the radioactive material

^{**} After removing the radioactive material

CONSEQUENCES AND MANAGEMENT OF THE INCIDENT

Table 3: Radiation level around the isolated radioactive material

Dose rate	Surface (μSv/h)	At 1 meter (μSv/h)
Source 1	1036	10
Source 2	590	4

Figure 3: Isolated radioactive material (Lighting conductor with Ra-226 source)

CONSEQUENCES AND MANAGEMENT OF THE INCIDENT

Recommendations given by MADAGASCAR-I.N.S.T.N for safe storage of radioactive waste

- Radioactive waste should be stored in a safe place.
- According to the regulation in force in Madagascar, radioactive waste should not be removed unless authorization is given by the Regulatory Authority.

incident with contaminated scrap metal

CONCLUSION AND LESSONS LEARNED

Efficiency of the national system for prevention of radiological risks in the recycling metal

- Availability of radiation detection equipment at the cross border in order to identify suspected contaminated goods to be exported or imported.
- Training of customs officers and cross border workers in radiological risks and protection techniques and instrumentation for the measurement and analysis of radiation.

incident with contaminated scrap metal

CONCLUSION AND LESSONS LEARNED

Efficiency of the national system for prevention of radiological risks in the recycling metal

- Collaboration between Customs and the Regulatory Body responsible for radiation safety to ensure that the import and export of radiation source is properly regulated.
- Existence of a national regulation on radiation protection waste management and transportation of radioactive materials.

incident with contaminated scrap metal

CONCLUSION AND LESSONS LEARNED

Actions to be addressed in the future

- Radiation control at both national and international levels of scrap metal.
- Radiological training and information programme for those dealing with export and import of scrap metal.
- Installation of radiation monitoring systems at steel yards and scrap recycling facilities.

