

Control and Management of Inadvertent Radioactive Material in Scrap Metal Tarragona, 23-27 February 2009

The relevance for the nuclear industry decommissioning programmes

Patrick J O'Sullivan

Radiation Protection and Waste Management

OECD Nuclear Energy Agency

Release of Materials and Buildings

Plan of Presentation

- Background
- Overview of clearance levels
- Alternatives to clearance
- German case study
- Conclusions

OECD Nuclear Energy Agency (NEA) Member Countries and Mission

Australia Canada **Czech Republic** EU-15 Hungary Iceland Japan **Mexico** Norway **Republic of Korea Slovak Republic Switzerland** Turkey **United States**

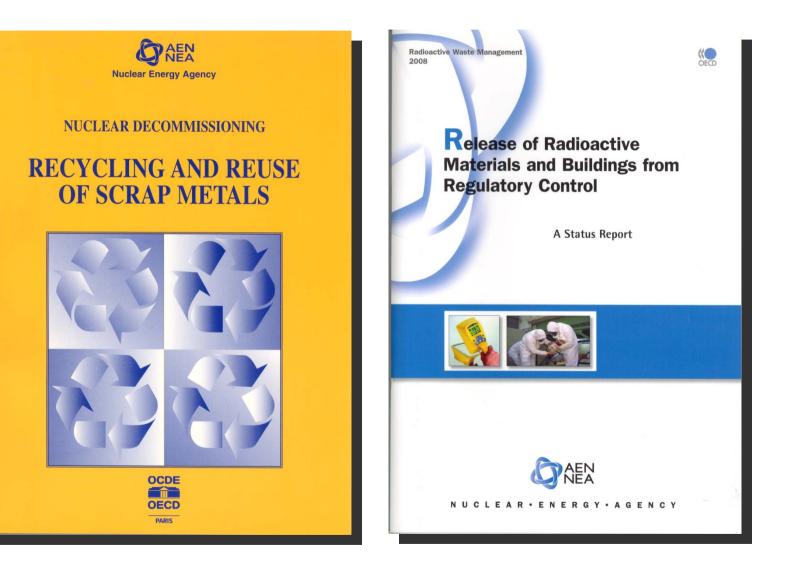
EC IAEA

• ... developing the scientific, technological and legal bases for a safe, environmentally friendly and economical use of nuclear energy ...

• ... provide authoritative assessments and to forge common understandings as input to government decisions and policy analyses...

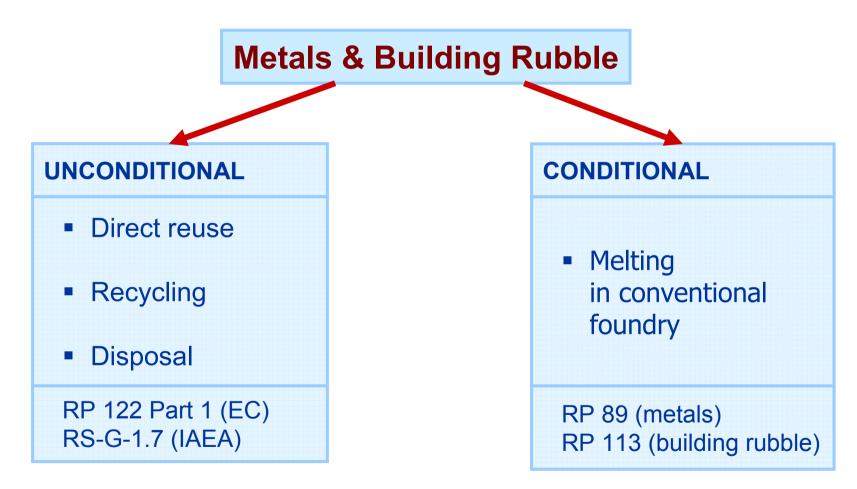
WPDD – Working Party on Decommissioning and Dismantling

CPD – Cooperation Programme on Decommissioning


Missions

- n The WPDD Is a Working Party of the RWMC) with the mission
 - To facilitate multilateral an open dialogue among peers, in particular policy makers, the regulatory authorities, R&D institutions and the decommissioning industry
 - To undertake studies on the management and techniques for decommissioning
- n The CPD is a joint undertaking amongst 22 decommissioning organisations for the exchange of experience in decommissioning

Relevance for nuclear industry decommissioning?


Decommissioning Materials (Forsmark-3 1 GWe BWR)

Radioactive Material (tonnes)						
Reactor pressure vessel	760 (metal)					
Other contaminated systems	5950 (metal)					
Concrete	1230					
Sand	1050					
Operational waste	400					
Inactiv	e/decontaminated material	(tonnes)				
Metal	7700	Includes c. 3000 tonnes from the steam turbines				
Concrete	229 500					

RECOMMENDED RP CRITERIA

RP CRITERIA: INTERNATIONAL RECOMMENDATIONS

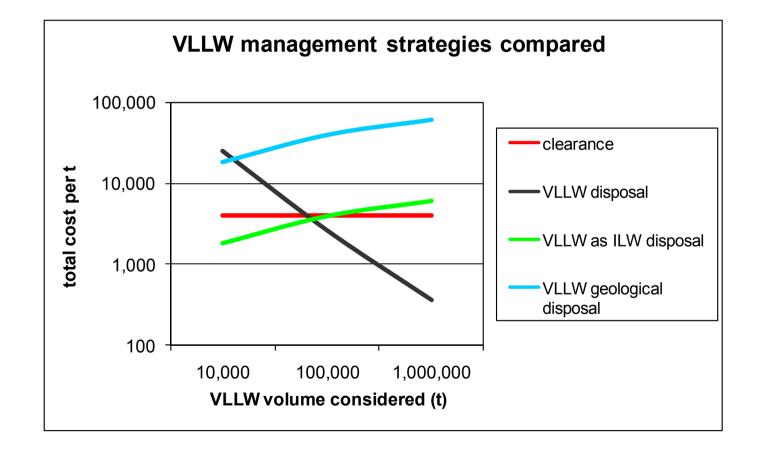
Purpose	Н 3	C 14	Ni 63	Co 60	Cs 137	Sr 90	U 235	Am 241	Pu 239	Unit
Unconditional clearance, RP 122/I	100	10	100	0.1	1	1	1	0.1	0.1	Bq/g
Unconditional clearance, RS-G-1.7	100	1	100	0.1	0.1	1	-	0.1	0.1	Bq/g
Metal scrap for recycling or reuse, RP 89	1,00 0	100	10,00 0	1	1	10	1	1	1	Bq/g

RP CRITERIA FOR CLEARANCE OF MATERIALS (Bq/g)

Country	H 3	C 14	Ni 63	Co 60	Cs 137	Sr 90	U 235	Am 241	Pu 239	Origin
Belgium	100			0.1	1	1	1	0.1	0.1	RP122/1
Finland	10	10	10	1	1	1	0.1	0.1	0.1	Reg.
Germany	1,000 1,000	80 80	300 10,00 0	0.1 0.6	0.5 0.6	1 9	0.5 0.8	0.05 0.3	0.1 0.2	Col.5 Col.10a
Japan	100	1	100	0.1	0.1	1	-	10	0.1	RSG1.7
Netherlands	10 ⁶	10 ⁴	10 ⁵	1	10	100	10	1	1	EUBSS*
Spain	100 1,000	10 100	100 10,00 0	0.1 1	1 1	1 10	1 1	0.1 1	0.1 1	RP122/I RP89
Sweden	0.5 Bq/g for beta/gamma emitters0,1 Bq/g for α-emitters									
for ingots**:	1,000	100	10,00 0	1	1	10	1	1	1	RP89
UK	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	Reg. (SoLA)
	530	310	21,00 0	0.2	0.6	18	0.7	0.2	0.3	Reg.

RP CRITERIA FOR CLEARANCE OF MATERIALS (Bq/g)

Country	Metals	Comment
Belgium	726 tonnes: (79% of total mass) 2390 tonnes (95% of total mass)	Eurochemic reprocessing plant BR3 RR
Finland	n.a.	no decommissioning project exists
Germany	several 1,000 tonnes <u>per year</u>	annual quantity for formal clearance procedure from various decommissioning projects
Japan	Clearance to be used for NPPs e.g. 30,000 tonnes for 1100 MWe BWR	
Netherlands	Clearance to be used for NPPs - several 1,000 tonnes <u>in total</u>	NPP Dodewaard only (clearance after 40-year safe enclosure)
Spain	7,500 tonnes ferrous scrap <u>in total</u> 86 tonnes non-ferrous scrap <u>in total</u> 370 tonnes other materials <u>in total</u>	Vandellòs I NPP (clearance after 25-year safe enclosure)
Sweden	metal scrap: 53 tonnes for recycling 119 tonnes for melting at Studsvik <u>in total</u>	for ACL and ACF facilities
UK	~10,000 m ³ for disposal <u>in total</u>	Winfrith site only
US	Case-by-case approach	Decision by NRC based on 'very low amounts of radioactivity


ALTERNATIVES TO CLEARANCE (Recycling, Disposal as VLLW, Interim Storage)

- Logistical
 - Total amount of material arising from decommissioning
 - Availability of VLLW disposal sites
 - Need to characterise and segregate (and/or decontaminate) large amounts of non radioactive material
- Economic cost of waste treatment and storage vs. segregation and clearance
- Regulatory provisions within the regulatory framework (clearance options, clearance levels, restrictions to certain pathways etc.)
- Social public opinion on clearance and view of other industrial sectors (like metal working) to the source of cleared material

Illustrative costs of several waste management strategies [Avérous, 2004]

Technical factors

- Demonstrating compliance with clearance levels
 - difficult for material with varying nuclide vectors (e.g. fuel cycle facilities)
- Decontamination techniques
 - Melting removes long-lined nuclides (Cs-137)
 - Wet and dry blasting techniques
 - Electrochemical decontamination processes
 - Limitations due to geometry and access, e.g. piping valves

Health, environmental and socioeconomic Impacts

- Comparison of disposal/replacement vs. recycling/reuse:
 - Physical risks from workplace accidents and transport accidents more important than radiological or chemical risks
 - Non-radiological health risks much higher for disposal/replacement (e.g. steel mill and blast furnace operations)
 - Environmental impacts also higher (e.g. disruption and environmental damage from mining operations and extra energy requirement for replacement)
 - Socio-economic impacts (public opposition) can affect both alternatives

German Case Study (1)

Type of installation	In the process of decommissioning	Fully removed or released from control
Reactors with electrical power generation (incl. prototype reactors)	17 reactors	2 reactors
Research reactors \geq 1 MW thermal power (incl. nuclear ship Otto Hahn)	8 reactors	1 reactor
Research reactors < 1 MW thermal power	1 reactor	26 reactors
Fuel cycle facilities (primarily commercial production and reprocessing of fuel assemblies)	2 facilities	4 facilities

German Case Study (2)

- Metal recycling industry perspective
 - Any radioactivity should be prevented from entering scrap metal to prevent worker exposure and contamination of foundries
 - Any dose rate above background indicates radioactivity
 - Continuous melting of cleared material could ultimately increase the background activity level in the steel pool and lead to public opposition to the use of steel products
 - Reluctance to enter contracts with the nuclear industry

German Case Study (3)

- Decommissioning industry perspective
 - Decommissioning power plants are the main source of scrap metal /several 100,000 tonnes expected over the coming decades
 - Scrap is of high quality/ few residues
 - Regulatory framework for conventional waste prescribes recycling
 - No available disposal option
 - Large potential benefits from use of conditional clearance values (less decontamination, easier characterisation)

German Case Study (4)

- Outcome
 - Metal scrap accepted by certain scrap dealers and recycling companies
 - Material used only for defined end uses/ conditional clearance values
 - Control by competent authorities/ random checks of melting process

Overall Conclusions

- Large amounts of scrap metal from decommissioning presents a significant problem if reliance is placed on disposal
- Present-day technologies support decontamination of a large proportion of decommissioning steel to clearance levels
- Significant health, environmental and socio-economic benefits of recycling and reuse
- Conditional clearance options may satisfy the needs both of the metal recycling industry and of the decommissioning industry

