ANSWERS TO QUESTIONS OF PARTIES TO
the Joint Convention to the Third National Report on the
implementation of obligations under the Joint Convention on the
Safety of Spent Fuel Management and on the Safety of Radioactive
Waste Management

Podgorica, April 2018
| Question/Comment | The national regulatory body for radiation and nuclear safety and protection from ionising radiation in Montenegro is composed of representatives of the Ministry of Sustainable Development and Tourism, Nature and Environmental Protection Agency, Administration for Inspection Affairs and the Ministry of Interior. A clear division of responsibilities is provided in the Decree on Organisation and Method of Operation of State Administration (Official Gazette of Montenegro 5/12, 25/12, 44/12, 61/12, 20/13, 17/14, 6/15, 80/15, 35/16, 41/16, 61/16, 73/16, 3/17, 19/17, 68/17, 87/17), adopted by the Government of Montenegro. Interinstitutional cooperation is regulated by the Law on State Administration (Official Gazette of the Republic of Montenegro 38/03, Official Gazette of Montenegro 22/08, 42/11). Activities of all four competent institutions are divided in accordance with the Decree on Organisation and Method of Operation of State Administration, and by laws on the protection from ionising radiation and radiation safety, inspection supervision, transport of hazardous matters and protection and rescue, and each of them is responsible to involve the public, within their fields of competences, in the implementation of activities under their competence and to raise citizens' awareness thereof.

Namely, public participation in matters concerning protection from ionising radiation and, thus, the matters concerning safe management of radioactive waste, decision-making, adoption of strategic documents and drafting of regulations in Montenegro is governed by the Decree on the procedure and manner of conducting public debate in preparing laws (Official Gazette of Montenegro 12/12) and the Decree on the manner of and the procedure for establishing cooperation between state administration bodies and non-governmental organisations (Official Gazette of Montenegro 7/12).

Furthermore, the standards for public participation are established under the Law on Free Access to Information (Official Gazette of Montenegro 44/12) and the Convention on Access to Information, Public Participation in Decision-Making and Access to Justice in Environmental Matters (Aarhus Convention), which Montenegro is a full member of. It is important to emphasize that during the process of drafting of regulations the proposer organises a forty-day public debate with a view to drafting of the best possible regulation of the highest quality possible. Debates and forums, individual meetings and similar events take place during the public debate.

Also, forums, public debates and round tables, both informative and educational, are organised by each of the above institutions which compose the regulatory body, within their competences and as needed, in accordance with the said legal framework.

It should be emphasized that during organisation of the above informative and educational events aimed at raising citizens' awareness of the importance of safe radioactive waste management, the presence of representatives of the institution that manages radioactive waste storage, Centre for Ecotoxicological Research, is always mandatory. |
As regards the education, it should be noted that the Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management for the period 2017-2021 with the Action Plan for the period 2017-2021 and drafting of the new Law on Ionising Radiation Protection and Radiation Safety place an emphasis on the importance of training and continuous building of the capacities of employees in the field of ionising radiation protection, which provides guidelines for the development of a legal framework that will lay the foundation for the development of an adequate training programme for employees. Therefore, building capacities of employees in the field of ionising radiation protection also ensures provision of quality information to and education of wider public on ionising radiation protection and, thus, on matters concerning radioactive waste management.

Experiences so far have confirmed that involvement of all relevant parties, including representatives of non-governmental sector, provides better results in the fields of ionising radiation protection, radiation and nuclear safety and security and radioactive waste management, but also enhances acceptance of solutions by the public. The manner of accessing public information, selection of relevant participants, and the manner of addressing problems in the decision-making process is very delicate and must be planned carefully and with sufficient flexibility to allow adaptability to various situations. Involvement of all relevant participants has an important role in administrative procedures and may influence final decisions.

For the purpose of providing better information to interested audience about the matters of ionising radiation protection, radiation and nuclear safety and security and radioactive waste management, particularly because of the development of the new legal framework, the Ministry of Sustainable Development and Tourism will develop, in cooperation with the Nature and Environmental Protection Agency and representatives of non-governmental sector, the Communication Strategy in the field of ionising radiation protection, under the auspices of international donors, which will include the manner of communication, target groups, organisation, topics to be presented, authoritative bodies, production of brochures and other publications, etc. This activity is planned for 2019 as measure 51 in the Action Plan to the Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management for the period 2017-2021.

<table>
<thead>
<tr>
<th>2.</th>
<th>Country</th>
<th>Republic of Croatia</th>
<th>Article</th>
<th>Article General</th>
<th>Ref. in the National Report Section A, 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question/Comment</td>
<td>According to the Guidelines regarding the Form and Structure of National Reports (INFCIRC/604/Rev.3), National Reports should include overview matrix.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Answer</td>
<td>The overview matrix is published on the website as a separate document with the Third National Report of Montenegro.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3.</th>
<th>Country</th>
<th>Nigeria</th>
<th>Article</th>
<th>Article 16</th>
<th>Ref. in the National Report Section H, pp. 42-44</th>
</tr>
</thead>
<tbody>
<tr>
<td>Question/Comment</td>
<td>What kinds of ageing phenomena are you taking into consideration in keeping radioactive waste in interim storage, and how are these phenomena going to be controlled?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Based on documents and licenses issued for operation of the storage (construction, exploitation, license to manage radioactive waste storage) and based on the estimated volumes of generated radioactive waste in Montenegro, it is estimated that the storage can be operational for at least 50 years. After expiry of this period, depending on the condition and volume of the waste at that time, a decision will be made concerning next steps – methods of handling radioactive waste. This may be extension of the lifetime of the existing storage, building of a new storage or development of a radioactive disposal with decommissioning of the existing storage.

Section D: Registries and lists includes a table with types and volumes of radioactive waste and disused sealed radioactive sources that exist in the radioactive waste storage and the volumes of expected radioactive waste.

Therefore, as regards the ageing phenomena, it was considered initially during planning of the radioactive waste storage and selection of technologies and methods of processing and packaging of radioactive waste.

First, the following was considered:
- Radioactive waste in Montenegro by its structure is low and intermediate level radioactive waste;
- all known disused radioactive sources have been removed, dismantled, conditioned (except two caesium sources) and packed;
- Storage is performed in specifically designed stainless steel containers which are intended for storage and meet the disposal criteria;
- There is a set of control procedures which establish the condition of the facility and of stored radioactive material. This primarily relates to the two independent programmes of monitoring of interior and exterior of the storage. One is performed by the holder of the license to manage the radioactive waste storage, Centre for Ecotoxicological Research Ltd. CETI, and the latter is performed by an independent institution that meets all the requirements and offers the most advantageous conditions at the tender to perform this task;
- The radioactive waste storage and all installations are controlled periodically by a licensed institution, in accordance with a special law, and by inspection as well.

---

<table>
<thead>
<tr>
<th>Question/Comment</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>United States of America</td>
</tr>
<tr>
<td>Article</td>
<td>Article 16</td>
</tr>
<tr>
<td>Ref. in the National Report</td>
<td>Section E, 6.1.3 page 23</td>
</tr>
<tr>
<td>The report states that a procedure has been developed and approved for the inspection of the radioactive waste storage facility. Please summarize the key elements of this inspection procedure and describe the frequency at which inspections are conducted.</td>
<td></td>
</tr>
</tbody>
</table>

Key elements of regular inspection control of radioactive waste storage are:

1. Control of identification data on:
   - The name and other relevant information about the institution which is the operator,
   - Storage management, officer who is responsible for radiation protection, radiation protection expert, quality control monitoring system.
2. Safety control which includes:
   - Control of the data on radioactive waste inventory which is in the storage and the manner of its monitoring;
   - Control of accessibility and safety of the inventory database;
   - Control of the source and waste monitoring system, from identification through to storage itself;
   - Control of the storage design (description is provided for all variations and changes compared to the ones approved by the regulatory body during the licensing process, i.e. whether safety assessment was conducted after the changes were made, whether physical protection is ensured, whether the fire detection system is in working order, who manages physical protection of the storage, what is the video surveillance system for the storage and the surrounding of the storage, breaking in system, automatic ramp for the storage access control, control of keys, a key in case of accidents, etc.).

3. Control of monitoring data for radioactivity of the surrounding of the storage;

4. A system for controlling safety inside the storage (waste acceptance criteria, safety assessment by a qualified radiation protection expert, ventilation control, control of filters, control of air humidity, control of potentially contaminated water, control of precipitation discharge - drainage, control of water from handling area, control of the system for electrical equipment security, control of fire warning signs);

5. Control of the Protection Programme (whether the programme is in place, control of measuring equipment, control of personal dosimetry equipment, control of personal protection equipment, control of the storage entry and exit system, control of the warning system, identification of packages and space);

6. Control of monitoring of occupationnally exposed persons;

7. Safety activities (preparation of waste in the storage, safety actions related to the activities of the person responsible for radiation protection, data on dose limits, marking of controlled areas, notifications such as radiation warnings);

8. Local rules and monitoring (whether rules exist in written form, whether workers are familiar with procedures, control of procedures);

9. Data on management (whether there is communication with the fire department and security, whether management is providing adequate staffing, whether management ensures adequate resources for training of the staff, whether management ensures adequate equipment, etc.);

10. Control of the area (control of visitors, control of temporary workers (external employees), control of the population);

11. Discharge of material from the storage (in accordance with a special programme);
12. Interim storage (in accordance with a special programme);

13. Accidents (in accordance with a special programme);


Inspection of the radioactive waste storage is performed twice a year.

<table>
<thead>
<tr>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federative Republic of Brazil</td>
<td>Article 18</td>
<td>Section E, page 21</td>
</tr>
</tbody>
</table>

**Question/Comment**
The report states that Montenegro has small quantities of stored disused sealed radioactive sources and of radioactive waste; and even so the country is provided with a central facility for the storage of radioactive waste. Despite of it, according the report: "provisions of the new Draft Law on Planning and Construction were proposed so as to redefine the facilities of state interest among which are also the facilities for storage and disposal of radioactive waste. For the first time, regulations in the area of planning and construction of buildings include the term "facility for radioactive waste disposal". Is Montenegro already planning to construct a final disposal facility? Is there any schedule being discussed and/or proposed to the site selection and construction of the final disposal facility in the country?"

**Answer**
The Action Plan of the Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management for the period 2017-2021, measure 39, envisages that the national Analysis of further management of disused sealed radioactive sources and radioactive waste, which will also include proposed solutions for the future disposal in Montenegro, will be prepared by the end of Q2 of 2021.

After the National Analysis is prepared, the most acceptable options for further management of disused sealed radioactive sources and radioactive waste, including disposal, will be subject of the future Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management for the period 2022-2027. The decision on the need for Strategic Environmental Assessment for the future disposal will be made in a timely manner, in accordance with the Law on Strategic Environmental Assessment (Official Gazette of the Republic of Montenegro 80/05, Official Gazette of Montenegro 73/10, 40/11 and 09/11).

The Ministry of Sustainable Development and Tourism will coordinate activities aimed at the development of this National Analysis and establish a team/working body composed of representatives of relevant Montenegrin institutions, who will initiate preparatory activities for its development.

In the meantime, Montenegro as a participant of the interregional project of the International Atomic Energy Agency INT9182 “Sustaining Cradle-to-Grave Control of Radioactive Sources”, used the opportunity to contribute to the pilot project “Development of the analysis on further management of disused sealed radioactive sources and radioactive waste”, which includes disposal of radioactive waste as well. Under this interregional project, Montenegro used the opportunity to initiate preparations regarding drafting of the National Analysis of further management of disused sealed radioactive sources and radioactive waste in cooperation with the International Atomic Energy Agency (IAEA) by developing a special document which will help, not only Montenegro, but other countries participating in the project, to develop their National Analyses.
Therefore, although the central storage for radioactive waste management in Montenegro is new and became operational on 13 June 2012, Montenegro is preparing the basis and documents for decommissioning of the storage for radioactive waste management. Namely, the Ministry of Sustainable Development and Tourism has initiated activities aimed at drafting of detailed plans for decommissioning of the storage (central storage) and the temporary storage (remains of airplane engines) and, in that respect, asked for expert advisory support from IAEA in the form of an expert mission which took place in the period 6-10 November 2017 under this regional project. These activities are extremely important for planning of funds and defining of legal norms within the new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security, which is in preparation. The mission was dedicated to advice for drafting of decommissioning plans for both interim facility and the central storage for radioactive. The plans and legal provisions for decommissioning and decommissioning costs will be prepared in line with the requirements of IAEA standard for decommissioning of facilities, provisions of Directives of the Council of Europe 2013/59/EURATOM, 2011/70/EURATOM, Commission Recommendation 2006/851/EURATOM of 24 October 2006 on the management of financial resources for the decommissioning of nuclear installations, spent fuel and radioactive waste, etc.

<table>
<thead>
<tr>
<th>6.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. In the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>French Republic</td>
<td>Article 18</td>
<td>Section E, page 24</td>
</tr>
</tbody>
</table>

**Question/Comment**

Montenegro's report mentions the necessity to strengthen inspection supervision from the quantitative and qualitative point of view, by engaging an additional number of inspection officers and through a continuous professional education. Could Montenegro specify its plan on this subject?

**Answer**

For strengthening of the inspection capacities relating to ionising and non-ionising radiation protection, Montenegro has envisaged employment of additional three inspectors.

In 2018, employment of one inspector for ionising radiation protection is planned, and one inspector for non-ionising radiation protection in 2019 and one in 2020.

As regards the training plan for inspectors in the field of ionising radiation protection, the Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management for the period 2017-2021 envisages adoption of the National Programme of Professional Training in the field of radiation and nuclear safety and security and the ionising radiation protection (NPPT) and its standardisation within the new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security. Namely, the new Law will oblige competent institutions which compose the regulatory body in this field to prepare a five-year training plan for public servants on the basis of the above NPPT, which will be prepared in line with recommendations of the International Atomic Energy Agency (IAEA) and adopted by the Government of Montenegro on the proposal of the Ministry of Sustainable Development and Tourism for the period of 5 years.

Professional competence and periodical review of the professional competence of other persons employed with license holders for implementation of ionising radiation protection measures will be performed by an authorized legal entity based
on the Framework Programme of Professional Training and Periodical Review of the Professional Competence, which will be an integral part of the Rulebook on Professional Training.

Until the above regulations are drafted, inspectors for ionising radiation protection will continue to attend continuous training provided by the International Atomic Energy Agency.

<table>
<thead>
<tr>
<th>7.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Republic of Croatia</td>
<td>Article 19.2.2</td>
<td>Section E, page 22</td>
</tr>
</tbody>
</table>

**Question/Comment: For how long period was the licence for radioactive waste storage management issued? Do the licence conditions or regulations require periodic safety reviews and how often do they have to be performed?**

**Answer:**

The Law on Ionising Radiation Protection and Radiation Safety (Official Gazette of Montenegro 56/09, 58/09, 40/11, 55/16) does not envisage a license validity period or periodical reviews of the Safety Report. The new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security which regulates this field is in preparation, and it will limit a license validity period and prescribe periodical reviews of Safety Reports.

In the meantime, inspection is entitled to order measures regarding safety improvement during the control of operation of radioactive waste storage.

<table>
<thead>
<tr>
<th>8.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Republic of Croatia</td>
<td>Article 20</td>
<td>Section E, page 24</td>
</tr>
</tbody>
</table>

**Question/Comment:**

Please elaborate how is the internal cooperation assured considering that the regulatory body is structured within several governmental organisations: the Ministry of Sustainable Development and Tourism, the Nature and Environmental Protection Agency, the Administration for Inspection Affairs and the Ministry of the Interior?

**Answer:**

The national regulatory body for radiation safety, radioactive waste management, including radiation protection, is structured within the Ministry of Sustainable Development and Tourism, Nature and Environmental Protection Agency, Administration for Inspection Affairs and the Ministry of Interior.

The coordination of the above institutions is a responsibility of the Ministry of Sustainable Development and Tourism, as an umbrella institution which manages the policy in this field and which is responsible for reporting to the European Commission and the International Atomic Energy Agency on various aspects in this field, including the negotiating process for the European Union membership, and well as reporting on the implementation of international - legal instruments.

Interinstitutional cooperation is regulated by the Law on State Administration (Official Gazette of the Republic of Montenegro 38/03, Official Gazette of Montenegro 22/08, 42/11) and the Decree on Organisation and Manner of Operation of State Administration (Official Gazette of Montenegro 5/12, 25/12, 44/12, 61/12, 20/13, 17/14, 6/15, 80/15, 35/16, 41/16, 61/16, 73/16, 3/17, 19/17, 68/17, 87/17).

With regards to nuclear materials, it is important to stress the good cooperation with the Ministry of Economy, Police Directorate and the Customs Administration, and with competent inspection services, which monitor or are responsible for implementation of trade-related regulations under the Foreign Trade Law, Law on...
<table>
<thead>
<tr>
<th>9.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>French Republic</td>
<td>Article 20</td>
<td>Section E</td>
</tr>
</tbody>
</table>

**Question/Comment:** Is the independence of the regulatory body and the inspection administration considered sufficient by Montenegro? Are there plans to improve this independence from the executive?

**Answer:**
As mentioned, the national regulatory body for radiation safety, radioactive waste management is structured within the Ministry of Sustainable Development and Tourism, Nature and Environmental Protection Agency, Administration for Inspection Affairs and the Ministry of Interior.

Montenegro is a small system with limited use of radioactive sources and sources of ionising radiation and establishing of an independent state administration body is currently not sustainable. Consequently, a possibility for potential reorganisation of existing capacities should be considered in the future, in line with the main safety standards in the field of ionising radiation protection (BSS) in order to apply the best recognized and proven practice in this field so as to facilitate easier coordination, transposition and implementation of international standards, which will be particularly considered during revision of the Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management. Also, the reorganisation matters will be considered in the drafting of the new Law on Ionising Radiation Protection, Nuclear and Radiation Safety.

Potential challenges in this respect relate to possible decisions in the state administration reform. For the purpose of the state administration reform, particularly in the field of inspection control, and for easier performance of inspection supervision and more intense cooperation between competent inspections, the Government of Montenegro consolidated almost all inspections within a single body, Administration for Inspection Affairs, in 2012. Therefore, separation of the inspection for ionising radiation protection from the Administration for Inspection Affairs into another state administration body presents a great challenge at the moment, although we are aware that having all activities related to ionising radiation protection structured in a single place is in accordance with BSS standards and the best practice.

In the meantime, Montenegro will continue to strengthen administrative and implementation capacities in the field of nuclear and radiation safety and security through continuous training and increasing the number of employees, having in mind the scope and complexity of international standards in this field.

<table>
<thead>
<tr>
<th>10.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Republic of Greece</td>
<td>Article 22</td>
<td>Section 5.1, page 15</td>
</tr>
</tbody>
</table>

**Question/Comment:** Who bears the cost for the return of the sources to their manufacturer? Are there any relevant arrangements in place to assure that the necessary funding is available e.g. from the side of the source user?

**Answer:**
Safe and secure management of radioactive sources is one of the main activities which leads to conservation and protection of the environment and the health of
current and future generations and the protection of living and working environment.

All holders of licenses to perform radiation activity who have sources of ionising radiation and procure them for own needs from suppliers, or directly from manufacturers, are obliged to also ensure by the agreement on a source procurement the return of the source to its manufacturer. This ensures funds to secure the return of the source to its manufacturer, i.e. the price of the procurement includes the cost of return of the source, which means that holders of licenses to perform radiation activity who have sources of ionising radiation bear the cost of their return.

It is important to stress that provision of Article 16 of the Rulebook on methods of collecting, keeping, processing and storing of radioactive waste (Official Gazette of Montenegro 58/11) specify that a disused sealed radioactive source, or a radioactive source which is not intended to be used any longer, will be stored in the radioactive waste storage if it cannot be returned to the supplier. Therefore, the best international recommendations are implemented in Montenegro with regards to returning disused sealed radioactive sources to their suppliers. For example, for every imported source that is used in the Clinical Centre of Montenegro, there is an agreement with the supplier under which the source is returned to the supplier. Also, it is prescribed, *inter alia*, that a disused sealed radioactive source must be packed in a way to prevent dissipation of radioactive material and must be stored according to its characteristics, which are precisely defined by the acceptance criteria.

<table>
<thead>
<tr>
<th>11.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>United States of America</td>
<td>Article 22</td>
<td>Section F, 7.2 pp. 28-29</td>
</tr>
</tbody>
</table>

Question/Comment

*Please describe the overall human resources approaches and/or strategies in place to ensure that qualified staff are available for safety-related activities.*

Answer

The Strategy on Ionising Radiation Protection, Radiation and Nuclear Safety and Security for the period 2017-2021 with the Action Plan pays special attention to professional training and periodical review of professional competence. Namely, guidelines are provided for the establishment of a sustainable system of training and periodical review of professional competence in this field.

The Strategy on Ionising Radiation Protection, Radiation and Nuclear Safety and Security for the period 2017-2021 envisages adopting of the National Programme of Professional Training in the field of radiation and nuclear safety and security and ionising radiation protection (NPPT) and its standardisation within the new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security. Namely, the new Law will oblige competent institutions which compose the regulatory body in this field to prepare a five-year training plan for civil servants on the basis of the above NPPT, which will be prepared in line with recommendations of the International Atomic Energy Agency (IAEA) and adopted by the Government of Montenegro on the proposal of the Ministry of Sustainable Development and Tourism for the period of 5 years.

Professional competence and periodical review of the professional competence of other persons employed with license holders for implementation of ionising radiation protection measures will be performed by an authorized legal entity on the basis of the Framework Programme of Professional Training and Periodical Review.
of the Professional Competence, which will be an integral part of the Rulebook on Professional Training which will be licensed by the Nature and Environmental Protection Agency.

Until the above regulations are drafted, staff members of competent institutions and technical services will continue to attend continuous training provided by the International Atomic Energy Agency, while license holders will train their employees outside of Montenegro until this system is established.

<table>
<thead>
<tr>
<th>Question/Comment</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have specific scenarios/hazards been examined for category III threats? If yes, could you please provide some more details on these scenarios/hazards, in particular with regard to radioactive waste management?</td>
<td>Republic of Greece</td>
<td>Article 24</td>
<td>Section 7.4, page 34</td>
</tr>
</tbody>
</table>

**Answer**

An integral part of the Safety Report is the review – analysis of the storage safety from the point of view of assessment of probability of different types of hazards. Some of the reviewed events include:

- spilling of liquid in the storage;
- explosion in the storage;
- explosion in the immediate surrounding of the storage;
- flood (raising of ground waters, high precipitation, flood caused by water courses);
- earthquake;
- fall of an aircraft on the storage;
- terrorist attack on the storage;
- fire in the storage;
- radiological impact of the storage;
- external radiation during normal operation of the storage;
- precipitation outflows during normal operation of the storage;
- dissipation of solid radioactive waste at handling;
- direct radiation with radioactive waste;
- direct contact with radioactive waste;
- fall of a vessel with radioactive waste.

Consideration was given to hypothetical scenarios of accidents with different types of radiation sources – radioactive waste that is located or may be located in the storage, for instance 137Cs; 60Co; 241Am; 226Ra; 238U and all the analysis are presented in the Safety Report. Also, there is a whole set of accompanying documents, procedures, plans of action etc., and the entire set of these documents is approved by relevant state institutions such as the Agency, Ministry, Directorate for Emergency Situations and most of these documents are classified as secret in accordance with provisions of corresponding laws which regulate facilities of special interest in Montenegro, and actions are taken accordingly.

<table>
<thead>
<tr>
<th>Question/Comment</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is the concept of dose constraints for public and personnel exposure used in the storage facility? If yes, what are the applicable dose constraints levels?</td>
<td>Republic of Greece</td>
<td>Article 24</td>
<td>Section 7.4, page 31</td>
</tr>
</tbody>
</table>
Based on estimations and calculations, the Centre for Ecotoxicological Research Ltd. CETI, which manages the radioactive waste storage, has set dose limits for dose burden of workers and visitors for the storage, which are presented in the Instructions on Entering, Leaving and Staying in the storage in Podgorica (LAB-RAO – 01). Operational threshold annual effective doses for workers in normal operation equals 10 mSv/year, for visitors of the storage 3 μSv per visit (with annual maximum of 0.1 mSv). The dose constraints for the most exposed individuals amongst the population is 0.1 mSv/year.

All workers performing activities in the storage, as well as visitors, are continuously monitored in accordance with procedures of radiological protection of employees in the storage. Records are kept about all entries in the controlled area, which are used for immediate control of the dose received by individuals as defined by the Instructions on Entering, Leaving and Staying in the RAW storage in Podgorica (LAB-RAO – 01).

All dose limits are below the internationally accepted and recommended limits with a goal to ensuring that radiological burden resulting from working or staying in the storage is as low as possible and significantly lower than internationally accepted, and the ones prescribed by the Rulebook on Exposure Constraints (1 mSv/year for the population and 20 mSv/year for occupationally exposed persons).

<table>
<thead>
<tr>
<th>Question/Comment</th>
<th>Answer</th>
</tr>
</thead>
</table>
| As mentioned, a report on results of radioactivity monitoring was required to be submitted before the commissioning of the storage facility. Can you please describe what this radioactivity monitoring report includes? | A detailed analysis – radioactivity monitoring was performed in the area where the storage is located now, and the status was zero. Later, a monitoring programme is implemented every year – two independent programmes of monitoring of interior and exterior of the storage, as per the license requirement. One programme is performed by the Centre for Ecotoxicological Research Ltd. CETI as the operator, and the other one is performed by an independent institution which meets all the necessary requirements. The structure of both programmes is almost identical, and they include the following types of research:

- testing of radon concentration in the premises of the radioactive waste storage;
- gamma spectrometric analysis of samples of ground and surface waters, air and soil from the immediate surrounding of the storage;
- testing the level of exterior radiation by ti dosimeters and automatic measuring systems;
- testing the level of contamination – dosimetry test of the immediate surrounding of the storage – gamma, beta and alpha components of radiation;
- testing the level of contamination – dosimetry test of the interior of the radioactive waste storage, gamma and neutron components;
- testing the level of contamination – in situ gamma spectrometric test;
- testing total alpha and beta activity in waters;
- testing the level of contamination – testing of surface sweeps. |
| Question/Comment | Decommissioning is a very important stage in the life cycle of a radioactive waste storage and it needs to be planned so as to fulfill all requirements in order to protect human life and health and the environment.

As regards the national law, decommissioning is described in the definition of the Rulebook on methods of collecting, keeping, processing and storing of radioactive waste (Official Gazette of Montenegro 58/11), but only with regards to storing of radioactive waste, while provisions of the Rulebook on closer conditions for obtaining a license to manage radioactive waste storage (Official Gazette of Montenegro 56/11) provides that the method of decommissioning of the storage is an integral part of the Safety Report, which is submitted by the applicant in the process of obtaining a license to manage radioactive waste storage.

In addition, decommissioning of a nuclear facility is also defined by the Decision on conditions for the location, construction, trial operation, commissioning, operation and decommissioning of a nuclear facility (Official Gazette of the Federal Republic of Yugoslavia 42/97). However, the Law on Ionising Radiation Protection and Radiation Safety (Official Gazette of Montenegro 56/09, 58/09, 40/11, 55/16) does not define a radioactive waste storage as a nuclear facility, because it is a radiation facility (building).

Having in mind the standard of the International Atomic Energy Agency GSR Part 6 "Decommissioning of Facilities", provisions of Article 28 of the Council of Europe Directive 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/EURATOM, 90/641/EURATOM, 96/29/EURATOM, 97/43/EURATOM and 2003/122/EURATOM and provisions of Article 7 of the Council of Europe Directive 2011/70/EURATOM of 19 July 2011 establishing a Community framework for the responsible and safe management of spent fuel and radioactive waste, the new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security should transpose provisions of relevant directives and international standards, and prepare in that respect a separate rulebook or improve the existing Rulebook on closer conditions for obtaining a license to manage radioactive waste storage, which would regulate the requirements for selection of the location, designing, construction, trial operation, commissioning, operation and decommissioning of the radiation facility, and the Decision on conditions for the location, construction, trial operation, commissioning, operation and decommissioning of nuclear facility (Official Gazette of the Federal Republic of Yugoslavia 42/97) should be repealed.

Given the fact that the storage, which is for long-term radioactive waste management, became operational on 13 June 2012, the funds for its closure and decommissioning are not allocated since such norm is not prescribed by the existing legal framework. In this respect, a provision should be defined during drafting of the new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security to guarantee certain funds for closure and decommissioning of the storage, and such document should be defined as necessary in the
requirements for obtaining a license to manage radioactive waste storage.

Also, applicants should be required to prepare a decommissioning plan, while the contents of the plan and decommissioning requirements need to be prescribed by the rulebook which describes decommissioning requirements. Planning of decommissioning costs ensures availability of funds when needed to provide for safe decommissioning of a facility and should be sufficient to cover decommissioning costs, including costs of radioactive waste disposal. The estimation of decommissioning costs should be updated by updating the initial decommissioning plan or based on the final decommissioning plan.

For preparation of financial estimation for decommissioning of radioactive waste storage, the current holder of the license to manage radioactive waste storage, Centre for Ecotoxicological Research Ltd. CETI, needs to prepare a cost-benefit analysis. During preparation of this analysis and definition of legal standards, it is necessary, inter alia, to use the Commission Recommendation 2006/851/EURATOM of 24 October 2006 on the management of financial resources for the decommissioning of nuclear installations, spent fuel and radioactive waste, which focuses on adequate financing, financial security and transparency to ensure that funds are used only for the purpose for which they have been established.

For the purpose of improvement of the legal framework with regard to decommissioning, an expert mission was implemented in the period 6-10 November 2017 with support from the International Atomic Energy Agency (IAEA), which was dedicated to advice for preparing decommissioning plans both for the interim facility and the central radioactive waste storage, and involved representatives of all relevant institutions, including the Centre for Ecotoxicological Research Ltd.

<table>
<thead>
<tr>
<th>16.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>United States of America</td>
<td>Article 27</td>
<td>Section I, 10.1 page 47</td>
</tr>
</tbody>
</table>

**Question/Comment:** The report indicates that Montenegro has the obligation to procure radiation portal monitors. Please provide an update with respect to the status of this effort. Additionally, the report states that until radiation portal monitors are in place, authorized professional agencies perform activities to control the transboundary movement of radioactivity. Please describe what steps these agencies are taking to provide control.

**Answer:** As stated in the Report, Montenegro does not have portal monitors and is obliged to procure them in cooperation with available donors. During 2018, as a recognised measure 12 in the Action Plan of the Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management for the period 2017-2021, National Detection Programme will be prepared, and it will include identification of national needs and setting priorities in order to improve cross-border control. Also, what lies ahead of Montenegro is the establishment of a system for trade in nuclear materials, both within the new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security, and with regards to preparation of necessary infrastructure (institutional and implementation) for the implementation of such provisions, in accordance with requirements of the IAEA standard and provisions of the Council Directive 2006/117/EURATOM of 20 November 2006 on the supervision and control of shipments of radioactive waste and spent fuel.
Whenever a shipment of scrap metal appears on border crossings, if needed, inspection visits the border crossings, as well as within regular controls.

Until the installation of portal monitors for control of radioactivity of various goods at border crossings, continuous control of goods is established and performed by authorised legal entities of the Centre for Ecotoxicological Research Ltd and the Institute of Ferrous Metallurgy JSC, who are licensed by the Nature and Environmental Protection Agency to perform such activities.

In case an elevated level of radiation is established during control of certain goods, authorised persons will secure the location and inform the inspection, who will perform an on-site visit and together with customs authorities return the goods to the owner of the shipment.

According to information on the implementation of these measures in a two-year period, a total of 97.925 radioactivity controls of imported goods were performed at border crossings in cooperation with the Centre for Ecotoxicological Research Ltd. (34.718) and the Institute of Ferrous Metallurgy JSC Nikšić (63.207), as per the Checklist and List of Goods which are subject to radioactivity control.

<table>
<thead>
<tr>
<th>Question/Comment</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orphan sources:</td>
<td>No orphan sources have been detected in Montenegro since 2015. Control of scrap metal at export of metal waste from Montenegro is performed to detect orphan sources. Also, imported goods are controlled, particularly waste metal, at border crossings. Whenever a shipment of scrap metal appears on border crossings, if needed, inspection visits the border crossings, as well as within regular controls. Until the installation of portal monitors for control of radioactivity of various goods at border crossings, continuous control of goods is established and performed by authorised legal entities, Centre for Ecotoxicological Research Ltd and the Institute of Ferrous Metallurgy JSC, who are licensed by the Nature and Environmental Protection Agency to perform such activities. In case an elevated level of radiation is established during control of certain goods, authorised persons will secure the location and inform the inspection, who will perform an on-site visit and together with customs authorities return the goods to the owner of the shipment. According to information on the implementation of these measures in a two-year period, a total of 97.925 radioactivity controls of imported goods were performed at border crossings in cooperation with the Centre for Ecotoxicological Research Ltd. (34.718) and the Institute of Ferrous Metallurgy JSC Nikšić (63.207), as per the Checklist and List of Goods which are subject to radioactivity control.</td>
</tr>
</tbody>
</table>
| 18. | **Country**  
    | Russian Federation | **Article**  
    | Article 28 | **Ref. in the National Report**  
    | Section J, 11.1 page 49 |
|---|---|---|---|
| **Question/Comment** | The Report says that according to relevant regulatory provisions "disused sealed radioactive source or radioactive source which is no longer intended for use shall be stored in the radioactive waste central storage facility, if its restitution to the supplier is not possible. This means that every disused sealed radioactive source is returned to the supplier, if possible, prior to its storage to the radioactive waste central storage facility, administered by the Centre for Eco-Toxicological Research. What measures are in place to ensure the return of the disused sealed sources? Please, elaborate, on the plans for their return. |
| **Answer** | Safe and secure management of radioactive sources is one of the main activities which leads to conservation and protection of the environment and the health of current and future generations and the protection of living and working environment. All holders of licenses to perform radiation activity who have sources of ionising radiation and procure them for own needs from suppliers, or directly from manufacturers, are obliged to also ensure by the agreement on a source procurement the return of the source to its manufacturer. This ensures funds to secure the return of the source to its manufacturer, i.e. the price of the procurement includes the cost of return of the source, which means that holders of licenses to perform radiation activity who have sources of ionising radiation bear the cost of their return. |
| 19. | **Country**  
    | Russian Federation | **Article**  
    | Article 28 | **Ref. in the National Report**  
    | Section J, 11.1 page 49 |
| **Question/Comment** | Please, elaborate on the system and criteria used to categorize disused sealed sources for the disposal purposes? |
| **Answer** | Montenegro uses the methodology of the International Atomic Energy Agency with regards to categorisation of disused sealed radioactive sources. However, there are currently no criteria for disposal or requirements for radioactive waste disposal and they cannot be provided because the requirements for disposal have not been prescribed yet, except with regards to the legal ground for drafting of a special rulebook on disposal within the Law on Ionising Radiation and Radiation Safety, when Montenegro decides to perform disposal. |
| 20. | **Country**  
    | United States of America | **Article**  
    | Article 28 | **Ref. in the National Report**  
<pre><code>| Section J, 11.1 page 50 |
</code></pre>
<p>| <strong>Question/Comment</strong> | The U.S. commends Montenegro on its follow-on efforts to collect, transport, and condition disused sealed sources for safe and secure management in its radioactive waste central storage facility. |
| <strong>Answer</strong> | Montenegro would like to thank the Government of the United States of America for recognizing the progress achieved by Montenegro with regards to collection, transport and conditioning of disused sealed radioactive sources and their safe and secure management in the central radioactive waste storage. |</p>
<table>
<thead>
<tr>
<th>21.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Romania</td>
<td>Article 32</td>
<td>page 50</td>
</tr>
</tbody>
</table>

**Question/Comment:** Could you mention the legal path of the high activity sealed radioactive sources management after they are returned to the manufacturer as disused radioactive sources?

**Answer:** Article 16 of the Rulebook on methods of collecting, keeping, processing and storing of radioactive waste (Official Gazette of Montenegro 58/11) regulates that a disused sealed radioactive source or a radioactive source which is not intended to be used any longer will be stored in the radioactive waste storage if it cannot be returned to the supplier. Therefore, the best international recommendations are implemented in Montenegro with regards to returning disused sealed radioactive sources to its supplier.

All holders of licenses to perform radiation activity who have sources of ionising radiation and procure them for own needs from suppliers, or directly from manufacturers, are obliged to also ensure by the agreement on a source procurement the return of the source to its manufacturer. This ensures funds to secure the return of the source to its manufacturer, i.e. the price of the procurement includes the cost of return of the source, which means that holders of licenses to perform radiation activity who have sources of ionising radiation bear the cost of their return.

The new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security, which is in preparation and the drafting of which is coordinated by the Ministry of Sustainable Development and Tourism, will transpose provisions of the new Directive of the Council of Europe 2013/59/EURATOM laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/EURATOM, 90/641/EURATOM, 96/29/EURATOM, 97/43/EURATOM and 2003/122/EURATOM, which specifies that a disused radioactive source may be procured only from a supplier/manufacturer who has a clearly defined manner of handling the returned disused radioactive source.

Consequently, all future agreements on procurement of sources which holders of licenses to perform radiation activity procure for own needs, from a supplier or directly from a manufacturer, must also ensure that the supplier or the manufacturer to whom a disused radioactive source is returned has a clearly defined plan for further handling of the returned source, as verified by their competent regulatory body.

It is important to stress that Montenegro does not produce radioactive sources and, therefore, after a source is returned to the manufacturer, it becomes the responsibility of another country and its handling is regulated by the legal framework of that country.

<table>
<thead>
<tr>
<th>22.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Romania</td>
<td>Article 32</td>
<td>Page 15</td>
</tr>
</tbody>
</table>

**Question/Comment:** Could you provide more information about the strategy applied in solving the situations regarding potentially illegal trade in radioactive and nuclear materials, appearance of sources of unknown owners, as well as incident and accident situations likely to generate radioactive waste?
The Parliament of Montenegro adopted the Law on Ratification of Amendments to the Convention on the Physical Protection of Nuclear Material (Official Gazette of Montenegro – International Treaties 4/16 of 25 March 2016) whereby Montenegro contributed to entry into force of amendments to this Convention internationally on 8 May 2016 with a view to eliminating potential dangers created by sabotage of nuclear material and nuclear facilities, illegal appropriation and the use of nuclear materials, as well as illegal trade in radioactive and nuclear material, by joint action of the Parties to the Amendments. This is an expression of a clear position of Montenegro in combating nuclear terrorism. In addition, in December 2015, Montenegro formally expressed readiness to accept voluntarily implementation of non-binding Code of Conduct on the Safety and Security of Radioactive Sources and the supplementary Guidance on the Import and Export of Radioactive Sources and, at the same time, appointed a contact person for the Code. Montenegro is a member state of the incident and trafficking in nuclear and radioactive material database (ITDB) since 2006, while it prepared in 2009 the first Integrated Nuclear Security Support Plan (INSSP) in cooperation with the Department of Nuclear Security of the International Atomic Energy Agency and updated it in February 2017 with the Action Plan for the period 2017-2019. The objective of the INSSP revision included, *inter alia*: identification of national needs and needs prioritisation, proposing effective implementation plans for the following three years based on identified national priorities, as well as raising awareness of the nuclear safety information management system.

In addition, measure 12 of the Action Plan of the Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste Management for the period 2017-2021 envisages drafting of the National Detection Plan, which will include identification of national needs and setting priorities for the purpose of improvement of cross-border control. Also, what lies ahead of Montenegro is the establishment of a system for trade in nuclear material both within the new Law on Ionising Radiation Protection, Radiation and Nuclear Safety and Security and with regards to preparation of necessary infrastructure (institutional and implementation) to implement such provisions, in accordance with requirements of the IAEA standard and provisions of the Council Directive 2006/117/EURATOM of 20 November 2006 on the supervision and control of shipments of radioactive waste and spent fuel.

Montenegro is participating in platforms of the Unified System for Information Exchange in Incidents and Emergencies for early notification of incidents which include radioactive sources with potential transboundary effects (USIE).

As described in Section J (pp. 48 and 49), in case of detection of orphan sources, Article 37 of the Law on Ionising Radiation Protection and Radiation Safety (Official Gazette of Montenegro 58/09, 58/09, 40/11, 55/16) provides that costs of their storage will be provided from the Budget of Montenegro. According to applicable regulations, the Administration for Inspection Affairs performs inspection supervision via environmental inspection, i.e. performs control of the source until it is stored safely, finds the owner, if possible, and takes legally prescribed measures against the owner. Therefore, in case of detection of an orphan source, if inspector cannot establish ownership, he will file a misdemeanour or criminal charges against NN person and order a measure of storing of the source in the radioactive waste storage.

The storage costs are provided for in the Budget of Montenegro pursuant to Article 37 of the Law on Ionising Radiation Protection and Radiation Safety. If the owner is
established subsequently, the State will claim reimbursement of storage costs from
the owner, the inspection will apply sanctions. If the owner is found immediately,
the inspector will order measures, misdemeanour or criminal, and issue order for
the lost source to be placed in a safe place with the owner or in the radioactive
waste storage if there is no intention to use the source any longer. In most cases, it
is impossible to find the owner of a lost source.

Therefore, practice is well-organised in Montenegro when an orphan source is
detected; however, the system in this respect needs to be improved and formalized
by establishing of a formal team for orphan sources detection. The Ministry of
Sustainable Development and Tourism will establish the team for orphan sources
detection in cooperation with relevant institutions, and the team will be obliged to
prepare a work plan. After that, detection of orphan sources requires development
of a formal procedure for involvement of certain Government bodies and institutions,
such as, for example: Police Directorate, Customs Administration, Administration
for Inspection Affairs, Forensic Centre of Montenegro, Nature and Environmental
Protection Agency, ITDB contact person, National Security Agency, Ministry of
Sustainable Development and Tourism, Prosecutor's Office, etc.

Until the establishment of the formal team, it is important to point out that the
Ministry of Sustainable Development and Tourism implemented successfully the
project "Strengthening of environmental protection system at the level of state
institutions of Montenegro" in cooperation with OSCE mission to Montenegro during
2011, which was supported within the activities dedicated to improvement of the
Strategy on Ionising Radiation Protection, Radiation Safety and Radioactive Waste
Management. Three training courses were delivered within the project for 110
officers of border police, customs outposts, as well as staff members of the Nature
and Environmental Protection Agency and the Ministry of Interior in central,
northern and southern region of Montenegro. For the project to be sustainable, a
brochure dedicated to prevention of prohibited transport of nuclear and radioactive
material was prepared, as well as a manual for detection and handling of a
radiation sources and for controlling functioning of dosimetry equipment, which are
published on the website of the Ministry of Sustainable Development, Police
Directorate and the Customs Administration of Montenegro for the purpose of
transparency and access to information.

Regarding treatment of radioactive waste created during accidents or incidents, if it
happens at the holder of the license to perform radiation activity, primary
responsibility lies with the license holder in terms of restoring the situation and
payment for storage of created radioactive waste. The same applies if the license
holder has caused damages outside his premises.

If a situation occurs in the territory of Montenegro, which is the responsibility of the
local self-government unit and not of license holders, costs in that case will be
covered from the Budget of Montenegro.

23. Country: Ukraine  Article: Article 32  Ref. in the National Report:
Section D, page 15

Question: What is the design life of the Central Storage Facility?
Based on documents and licenses issued for operation of the storage (construction, exploitation, license to manage radioactive waste storage) and based on the estimated volumes of generated radioactive waste in Montenegro, it is estimated that the storage can be operational for at least 50 years. After expiry of this period, depending on the condition and volume of the waste at that time, a decision will be made concerning next steps – methods of handling radioactive waste. This may be extension of the lifetime of the existing storage, building of a new storage or development of a radioactive disposal with decommissioning of the existing storage.

<table>
<thead>
<tr>
<th>Question/Comment</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>What data regarding ionizing radiation sources and radioactive waste are included to the database (central register)?</td>
<td>The central registry of sources contains all available data on sources: type of device, type of isotope, activity of the source (given or estimated on the respective date), serial number of the source (if available), owner of the source and place where the source is used. In addition, records are kept of occupationally exposed persons and the persons who are responsible for radiation protection.</td>
</tr>
</tbody>
</table>

Protection of data on sources of ionising radiation and radioactive waste from computer viruses (cybercrime) is ensured by applying of the Information Security Law (Official Gazette of Montenegro 040/16) and through coordination by the Government Cyber Incident Response Team (CIRT). Strategic guidelines are provided within the Cyber Security Strategy of Montenegro for the period 2018-2021, which was adopted by the Government of Montenegro on 21 December 2017.

Due to continuous increase of the number of services that public and private sectors provide online, both to citizens and to other legal entities, safe cyber space of Montenegro is becoming one of national priorities. There is no doubt that cyber security constitutes a challenge of modern time and, as such, has not bypassed Montenegro either. We are witnesses to an increasing number of cyber incidents which affect Montenegro, through recent ransomware campaigns (software that encrypts contents of successfully infected computers and requests ransom payment for unlocking the data), DDoS attacks on the Government infrastructure, various online frauds, etc. The number of these cyber incidents is increasing substantially year after year.

Regarding development of information technologies and cyber security, Montenegro takes position 71 out of 193 member states according to the Report of the United Nations, i.e. of the International Telecommunication Union (ITU) titled “The Global Cybersecurity Index 2017”. However, in the situation where new threats emerge every day, our efforts related to cyber security must follow such dynamics.
The Parliament of Montenegro passed the Act on Changes and Amendments to the Information Security Act (Official Gazette of Montenegro 040/16) which envisages two key activities: establishment of the Information Security Council and protection of information infrastructure, which are in line with the NIS Directive (2016/1148), and after which the Information Security Council was established on 8 June 2017 within accompanying Action Plan for implementation of the Strategy.

In addition, the Analysis of Reports on Incident Situations in Montenegro, which is prepared by the Government Cyber Incident Response Team (CIRT) annually, noted a growing trend in the number of reported incidents year after year, as well as increasingly sophisticated attacks. The establishment of the national CIRT is a big step towards enhancing the abilities of the Government bodies to respond to cyber incidents affecting Montenegro. CIRT is recognised as a central point for incident response in Montenegro, however, there is an obvious lack of narrowly specialised staff to respond to this challenge successfully, and continuous efforts must be invested in its improvement.

<table>
<thead>
<tr>
<th>26.</th>
<th>Country</th>
<th>Article</th>
<th>Ref. in the National Report</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Republic of Greece</td>
<td>Article 32.2.4</td>
<td>Section 5.1, page 15</td>
</tr>
</tbody>
</table>

**Question/Comment**
As stated in the report, "only solid radioactive waste that meets the acceptability criteria for the radioactive waste storage facility may be held in storage." Are there any waste streams not fulfilling the acceptance criteria of the storage facility? What is the waste management approach in this case?

**Answer**
The radioactive waste storage is intended for storing solid radioactive waste from industry, medicine or research activities. The storage is not intended for storing of liquid radioactive waste or waste that would be a product of nuclear power generation. Generally, Montenegro does not have and has never had in its history the facilities which could be classified as "nuclear" and, consequently, the number and type of radioactive waste is limited. On the other hand, all known radioactive waste and disused radioactive sources have been removed from the territory of Montenegro and stored in accordance with national regulations and principles of the International Atomic Energy Agency (IAEA). The conditioning process was taking place under supervision of the IAEA, which provided expert support to Montenegro in that activity.

It is important to notice that liquid radioactive waste does not exist in Montenegro, however, there is always a possibility of its occurrence. In case liquid radioactive waste occurs in Montenegro in any way, the holder of the license to manage radioactive waste storage is obliged to define a Plan for transforming such waste into solid waste outside the borders of Montenegro, including cost projection, so that it represents an integral part of the Analysis, in cooperation with the Ministry of Sustainable Development and Tourism, prior to adoption of the new Strategy for the period 2022-2027. Only solid radioactive waste which meets the acceptance criteria for the radioactive waste storage may be stored. This measure is contained in the Action Plan of the Strategy for the period 2017-2021.