Simulation of Spent Fuel PWR Assembly Behavior under Normal Conditions of Transport

Joe Rashid and Albert Machiels

IAEA International Conference on Spent Fuel Management Vienna, Austria – May 29-June 4, 2010

IAEA Spent Fuel Management Conf.

Normal Conditions of Transport

Regulatory Requirements (10 CFR 71)

- 0.3-m Drop of a Transport Cask onto an Unyielding Horizontal Surface, Unprotected by Impact Limiters, in Maximum-Damage Orientation
 - Package Contents "Not Substantially Altered"
 - No Loss or Dispersal of Spent Fuel
 - No "Significant Increase" in External Surface Radiation Levels
 - No "Substantial Reduction" in Effectiveness of Package

5/31-6/4/10

Presentation Outline

Analytical Approach: Two-Step Process

- Global Modeling and Explicit-Dynamics Analysis
- Local Modeling and Failure Analysis

Results

- Global Forces Acting on Fuel Rods
- Spacer Grid / Assembly Distortions
- Fuel Rods and Guide Tube Failure

Conclusions

5/31-6/4/10

Global Modeling and Analysis

Finite Element Model for Dynamics Analysis

IAEA Spent Fuel Management Conf.

Global Modeling & Analysis – cont.

Global Modeling & Analysis – cont.

Dynamic Forces Acting on Fuel Rods

ANATECH 5/31-6/4/10

IAEA Spent Fuel Management Conf.

Dynamic Forces Acting on Fuel Rods

Maximum Pinch Force Frequency/Probability Distribution – Spacer Grid

IAEA Spent Fuel Management Conf.

Local Modeling & Failure Analysis Failure Modes during Drop Accidents

Figure III-29. Fuel Rod Failure Modes

IAEA Spent Fuel Management Conf.

Mode-I/II Damage in Fuel Rods

Axial Stress is at the Limit Of Mode-I Damage Initiation, but No Failure

Mode-III Damage in Fuel Rods

Damage Evaluation of Fuel Assembly

Linking Theory and Practice

Damage Evaluation of Guide Tubes

Conclusions: Compliance with 10 CFR 71 ?

Package Contents "Not **Assembly Geometry is** Substantially Altered" **Restored to Near Original** Shape No Loss or Dispersal of No Fuel Rod Failures **Spent Fuel** No "Significant Minor Damage in Shielding Increase" in External Material Surface Radiation Levels No "Substantial **Guide Tubes may Experience Reduction**" in **Partial Rupture or Plastic** Effectiveness of **Distortion, but Assemblies** Package **Remain Intact**

5/31-6/4/10

