

<u>K. Shirai</u>, H. Takeda, M. Wataru T. Arai, J. Tani, T. Saegusa Central Research Institute of Electric Power Industry (CRIEPI)

Contents

- I. Spent Fuel Interim Storage in Japan
- II. Containment Performance Test of Metal Cask
- III. Concrete Cask Performance Test with Full-scale Cask
- IV. Summary

Spent Fuel Integrity (Session5a, 05-04, by JNES)

Spent Fuel Interim Storage in Japan

2

Safety Evaluation Scenario for Metal Cask

Test Program for Metal Cask Storage

Program Item	1990		2004	2005	2006	2007	2008	2009	2010
Containment Performance Test of Metal Cask									
a. Drop Test without Impact Limiter			Full- Scale						
b. Aircraft Crush Test			* Horizontal Test : 2/5Scale * Vertical Test: Full-Scale						
c. Long-term Confinement Test of Lid StructureFull-Scale (19 years heating)Open the lids									
Thermal Test of Storage Facility	1/5Scale								

These demonstrative research works have been carried out under the contract from NISA/METI.

Containment Performance Test of Metal Cask -Short-term integrity of Metal Gasket-

- Key Issue : Cask Lid Sliding & Opening
- Drop test of full-scale metal cask without impact limiter
 - Measure inventory that may leak at the moment of mechanical impact through lid
 - 2 drop tests with not-degraded gasket
 - Floor Model RC Structure
 4.8m Wide, 10m Long, 1.5m Thick
 fc : 36MPa

Horizontal drop onto floor

Rotational impact onto floor

Aircraft Crash Test on Metal Cask Lid Model

- Determination of the inherent safety of casks under extreme impact conditions has become increasing interest since the terrorist attacks from 11th Sep. 2001
 - e.g. NEI in US, BAM in Germany
- Literature gives information about only analytical approaches

- In Japan, Aircraft impact onto Nuclear Power Station
 If probabilities of aircraft impact exceeds 10⁻⁷ time/NPP*Year, external impacts caused by aircraft crashes have to be considered
 - Protection measures might be necessary to reduce the effect of damage.

Long-term Confinement Test (1)

- **To confirm long-term confinement of metal gaskets under normal storage condition**
 - Assessed by experimental data of two full-scale cask lids & analysis
 - Tests continuing for more than 19 years under accelerated condition (Gasket temp. = 140, 130 °C const.)
 - Equivalent storage period : more than 60 years (Actual condition : Gasket temp. decrease)

Long-term Confinement Test (2)

- **To confirm the characteristics of metal gaskets after thermal aging**
 - Open the lids
 - Verification of components
 - Elastomer Gasket, Silver Gasket, Aluminum Gasket
 - Tightening bolt, Pressure gauge, Surface condition of the flange and so on.

9

International Cooperation relating to ageing of sealing performances

To study the evolution with time and temperature of the sealing performances of Helicoflex metal gaskets applied to storage casks.

- Participants CEA (France), GNS (Germany), CRIEPI (Japan)
- Duration: October, 1st, 2009 to March 31 th, 2013.
- Objective Modelling of the behaviour and the precision of the lifetime prediction

Cask storage facilities

Conventional facility

New-type facility

Propose fundamental length (the ceiling height and the stack height) of the cask storage facility from the viewpoint of thermal-hydraulics.

Temperature distribution (1/5 scale model)

The ceiling height and stack height directly influences the heat removal characteristic of the facility.

Study of Canister Based Concrete Cask Storage Technology

- Why concrete cask storage is studied?
 - Diversification of SF storage technology
 - Economic reason
- Technical and Safety Issues on a Concrete Cask Storage
 - Stress strain cracking (SCC)
 - Leakage monitoring during storage period
 - NDE on lid closure weld
 - Periodic self-inspection requirement
 - SF transportation after the storage period (50y)

Qualification Test of Concrete Cask Performance

Basic Design : Concrete Cask

Reinforced Concrete Cask:RC

Max. Weight : 184t Concrete Filled Steel Cask:CFS

Test Facility in CRIEPI Akagi Test Center

Heat Removal Test of Concrete Cask (50% Blockage)

Cask Type		RC	CFS		
Cooling Condition	Normal	50% blockage	Normal	50% blockage	
Inlet Air	33				
Canister Surface	209	214	192	200	
Guide Tube	301	306	228	235	
Temp. Increase of Cooling Air	65	70	52	66	
Storage Container	91	96	83	93	

Heat Removal Test of Concrete Cask (100% Blockage)

Drop Test Scenario of Canister in Concrete Cask

Canister	CS + SUS Basket	Al Alloy Basket			
Accident	Tip-over during handling	Drop during handling			
Orientation	Horizontal	Vertical			
Height	1 <i>m</i>	6m			
Condition	Tipping-over from height of GC	Drop height from Cask Height			

Drop Test of Canister in Concrete Cask

Cracking

st lid

22

Test of Free-Standing Concrete Cask under Strong Earthquake

PATRAM 2007: K. Shirai et al. by CRIEPI

Great Hanshin-Awaji Earthquake(1995)

Technical requirements for Seismic Evaluation

NISA/METI on April 2006

<u>Concrete cask should be protected from Tipping-over or Interfering neighbor</u> <u>casks, and the Integrity of the nuclear spent fuel also be intact during the strong</u> <u>earthquake motions</u>

Seismic Response of Non-Fixed Storage Cask
 Concrete Cask has Multiple Gap Structures

Seismic Tests of Concrete Cask

National Research Institute for Earth science and Disaster prevention (NIED)

- 3-D Full-Scale Earthquake Testing Facility "E-Defense "
- Full-Scale Concrete Cask : Outer Diameter 4m, Height 6m, Weight 190ton
- Full-Scale MPC with 1 17X17PWR and 20 Dummy PWR Fuel

Floor Model : Width 8m, Height 0.8m, Weight 125ton

Deterioration of Metal Canister in Salty Air Environment

- ISFSI in Japan is likely installed at coastal sites
- Temperature decreases during storage period and
 - salt condensation increases on canister
- Austenitic stainless steel : Vulnerable for SCC
 - under a certain unique set of circumstances

Cause a loss of containment ?

Key research items for SCC in CRIEPI

Long-term Performance of Canister in Concrete Cask at INL

- INL Dry Cask Storage Experiences
 - □ Part of a demonstration program from DOE
 - 6 casks (MC-10, 125B2, CastorV-21, REA2023, TN24P, VSC-17)
 - Stored from 1991.January (over 15 years storage)
 - Casks are monitored for temperature, fission product release to the fill gas, and external radiation levels

Canister Surface in Concrete Cask Storing SF for 15 yrs at INL

① Annulus top

Station of the second sec

2 MPC top

Visual inspections revealed some surface rust present but no large scale flaking. No gross corrosion, pitting, or general attack, and all coatings appear to be intact.

③MPC middle


```
(4)MPC bottom
```


6 Support structure plate

⑦Support structure side

(8) Annulus air inlet

Summary

In Japan, utilities are planning to commence the operation of the first ISF in 2012. Regulatory authority correspondingly modified the reactor regulation law and has been settling the relevant safety rules to operate the interim storage facility. To prepare the safety requirements and promote the rational reviewing procedure for the application of ISF establishment license, CRIEPI is steadily performing the key research studies, which includes degradation of cask component materials, leakage from the lid at accidents during the subsequent transportation after storage.