Kozloduy 1/4, Bulgaria

The plant has developed a well-established recruitment system for university degree personnel. The plant has a permanent office in the country capital university, where they are seeking promising students and offering them fellowships and future employment. Students have the opportunity to spend some time occasionally working in the plant during their study period and thereby become more familiar with the company. In addition, the plant maintains a data base about the potential new employees, willing to get employment in the plant. Currently they have about 2400 applications for employment, while their needs are about 250 new employees per year.

As an example the radiochemistry department recently wanted to employ a new technician. The head of the department has submitted the request including the education prerequisites to personnel department. They have found about 100 matching records in their data base and sent them to the department head for consideration. He has selected the new employee after interviewing 10 candidates with highest marks at the university.

With such a system in place the plant can at any time employ the best available people

North Anna 1/2, USA

A bimonthly electronic magazine, The Idea Factory, is used to update instructors and helps to maintain and improve instructional knowledge and skills. It provides ideas and activities for application either in the classroom or in the development of training materials. Instructors and staff from both sites (North Anna and Surry) and corporate contribute ideas and activities. Examples of things covered by the magazine include the following:
- Aids to making Power Point presentations;
- Simple safety presentations that can be cut and pasted into other longer presentations;
- Details on presentation techniques;
- Examples and meanings of confusing words;
- How to search the Internet for training material;
- Training games;
- Training examples and Operating Experience Feedback (OEF) from other industries.
The Training Review Boards create a partnership between plant and training staff which contributes to line management ownership of training resulting in continuous improvement of the learning environment.

The Training Review Boards oversee training at the working level and consist of Superintendent (applicable discipline), Superintendent Nuclear Training, Supervisor Nuclear Training (applicable discipline), Supervisor (discipline), and other relevant people may be co-opted, as necessary. The review boards meet quarterly.

These review boards cover all site disciplines (eg. Operations, maintenance etc.) and meet regularly to discuss all aspects of training, training performance, changes to training programs, approval of programs etc. They lead to a very close relationship between site and training staff, examples of which are seen in the following areas:

- Subject-Matter Experts (SMEs) from site are routinely used to present training in all areas. Classes presented by the SME are attended by a qualified instructor. The qualified instructor intercedes and provides support as necessary to assure SME instructional effectiveness and consistent presentation of the subject matter;
- Training mockups and simulators, extensively used throughout the station, are provided using line department resources. For example, a mockup of the charging pump seal array was designed and manufactured by Station machinists that enables Mechanics to practice seal disassembly/assembly prior to maintenance;
- Instructors regularly attend meetings on site, get involved in site projects and provide support to the outage.
The systematic approach to training is applied using a comprehensive training database, which is used effectively to enable timely, accurate, and cost-effective program design and maintenance of accredited training programs. Performance-based training focuses instruction on a documented set of job performance outcomes and standards. Using a systematic instructional design process, all of North Anna's accredited training programs' job/task analysis information is integrated into an electronic data system to reflect the entire performance-based process. The software, known as "VISION," allows instructors to view a program's complete layout (analysis, design, and development), and quickly search, review, and retrieve training information and various documents from a desktop computer. Job performance measures (JPMs) and randomly generated tests are produced from the VISION database. These documents are used to qualify trainees on program tasks. Within VISION, tasks are arranged under function (i.e., duty) areas. Below each task are its performance steps and the skills and knowledge (KSAs) associated with it. These KSAs are converted into cognitive objectives, and test items are created to evaluate them. All test items for instructional material are electronically collected to form a question pool from which the VISION software can produce randomly generated tests. A table of specifications (a blueprint of an exam or exam bank) is produced to ensure all objectives are covered. This table provides a link between the objectives and the test items, as well as identifies the type of test items (e.g., multiple choice, essay, etc.) available in an exam bank or on a specific exam. If more than one version of a test is required, the software automatically scrambles distractors and/or selects different questions. The primary advantage of the VISION software is the efficiency and consistency it provides. The test and document generation features allow instructors to perform routine development duties more quickly and easier than previous methods. Another advantage is that the same links that tie the data together provide a search trail for change management.

System of shadow training. The shadow training system in the departments works on two levels. Firstly there is an organization set up for apprentices who are studying at schools or colleges. This is based on a sandwich course of four weeks on site and four weeks of study. The apprentice is guided through the time on site by a tutor who also liaises with the school teachers. There is a contract between the plant and the apprentice who is ensured of a job position if he successfully completes the course. Secondly, there is a similar system for new recruits to the department based on a plant policy document with a standardized three party contract between the manager, tutor and trainee. The tutor in the shadow training process receives the appropriate professional development training. In the same way as for the first system, the tutor uses a shadow training booklet with defined tasks and skills required for their new job. Progress in the activities is signed off by the tutor and the trainee as the objectives are achieved. Every two to three months an appraisal interview is held between the trainee and the manager. The whole process takes about two years to complete.
Evaluation of training effectiveness takes place by means of three different kinds of evaluation sheets to be filled out.

- by training participants immediately after training.
- by training participants after some months of experiences on-the-job.
- by supervisors who participated in training.

Beside other relevant determinants indicators of safety culture are evaluated by the training participants.

LNPS has conducted comprehensive job and task analyses for positions important to safe and reliable operations.

The LNPS has undertaken an effort to reinforce existing training programs through use of the Systematic Approach to Training (SAT). The five production departments each have their own approach to analysis of training needs, based upon IAEA guidance on the Systematic Approach to Training (SAT). Comprehensive job and task analysis have been completed for almost all LNPS positions except for managers and some supervisors. The results of these analyses are being used to upgrade job descriptions, selection criteria, performance appraisals, training programs and plant procedures. Particular positions were selected as pilot projects for design, development and implementation of SAT-based training. The LPH Branch initiated the first LNPS SAT pilot project. In the case of operations, the blocking manager (assistant shift supervisor) position was selected for a pilot project. There has been broad participation in the analysis phase which has helped to create an atmosphere of learning. At LNPS, SAT is no longer regarded as a job for a few experts, but instead is a practice participated by each person, with benefits for all.
Since the Tricastin NPP has focused their attention on the improvement of training and established and implemented a monitored action plan, multiple methods are in use to ensure skills attached to tasks are met and maintained. During the review process it was noted that the maintenance of job functions are not based entirely on traditional type training courses. A specific policy implemented in Tricastin NPP is to offer a variety of methods to trainees to maintain their skills and competencies. The plant supports its new recruits with a formalised tutoring and shadow training program based on trained tutors and shadow training booklets. Immersion programs are proposed and implemented to improve cross-functional experience and skills. A project-based training method has been developed where there is theory input followed by the development of a project for each trainee to develop and implement based on course work completed. This project is then presented, discussed and assessed by the training centre and management. Situational team training is then used for practising action sheets for all field staff. The strength of this system lies in the fact that team management follows the field staff and completes observation sheets during the training. Afterwards well constructed debriefing sessions use methods of active trainee participation to prod and encourage response focused toward improvement. Newly appointed managers are provided with coaching to ensure they are able to perform the oversight function of this process. As a part of this program the operational departments monitor infrequently performed and other unusual activities so that these skills are constantly maintained by task assignment rotation and by including the tasks into scenarios for simulator training. The networks set up for key functions such as human factor specialists, contractor monitoring supervisors and team leaders enable the participants to identify training needs, share their experience, brainstorm and solve problems.
Since 1992, Tricastin NPP has been implementing a program of trainer support to the NPP identified as the "Club des Formateurs à Temps Partiel" or the Part Time Trainers Club. This group of individuals is specially chosen from volunteers, provides training for all the training departments at the site, which allows the trainers to share their plant technical knowledge and experience. This program also provides a mechanism for strong operating experience feedback. There are currently seventy-six (76) part-time trainers in the club coming from all the departments within Tricastin NPP. They cover the fields of nuclear safety, first aid, environment, emergency plan, radiation protection, information systems and fire fighting. A "club" coordinator within the training center manages the scheduling of the part time trainers, relations with the managers and training skills development. Although many personnel volunteer for the program only those demonstrating the appropriate skills and attitudes are chosen. The part time trainers use their training skills to enhance their career development at Tricastin NPP as possible future managers and supervisors, future full time instructors, future experts and advisors. In the year of 2001 three hundred and eighty (380) man days of training was provided to the training departments at the plant. The program is controlled, proceduralized, monitored and assessed on a routine basis to ensure the highest level of implementation. Each trainer has a personnel file maintained within the department and evaluations are performed. Plant management supports the program and as mentioned above this provides many days of training for plant staff through the use of their staff. At the present time this program is specifically implemented at Tricastin.

Tianwan, China

The training engineers are embedded into the production branches to assist the branch managers to implement the training programs for their personnel. Their role is to analyze the changing job tasks for the personnel and appropriately modify training programs, and to analyze the performance of branch personnel and make appropriate corrections in their training programs. This system facilitates establishing the effective training network which connect main elements of the training programme at TNPS. The tight contact with the Training Center from one side, and the direct involvement in the production branch activities on the other, provides good basis to immediately respond to the training needs in the branch using the methodology provided by the Training Center. The training engineers system is expanded to the shift level of where appropriate staffers are assigned as coordinators of shift personnel.
Plant managers assess staff skills using a skills mapping tool. Skill mapping involves using a table that helps work teams see clearly:
- individual skills categorised by type of activity
- overall collective skills, strengths and shortcomings, by comparing them to a set target value
- the likely evolution of individual skills over the coming years, focusing on each person’s particular professional life-time plan (career development, retirement).

Analysis of this skills mapping allows managers to:
- better identify any specific skills needed
- anticipate the skills development action plans needed to ensure their teams’ continuing ability to carry out their responsibilities.

Results achieved are:
- Analysis of the impact of retirement among I & C workers and adapting recruitment plans correspondingly (due to lengthy a training programme).
- Development of a plan for training electricians following a change in policy regarding the use of contractors.

This simple tool helps managers ensure their staff’s skills match those required for operating the units.

The ‘Training Advisory Board’ (TAB) and the ‘Training Programme Committees’ (TPCs) provide oversight and direction to the training section to ensure that training is used to improve plant performance and is meeting the needs of the line organizations.

The TAB is chaired by the BNP vice president and attended by section-level management, training, and TPC representatives.

The TPCs are chaired by a line manager or supervisor and include incumbents and training personnel. They each address one or more related programmes and are the primary means of ensuring that training drives improvements in personnel performance at BNP.

When performance problems are identified that can be addressed by a training activity, or job incumbents identify additional areas where training can improve plant performance, they are documented on the TPC action plan. The action plan includes: a description of the performance improvement item, the desired outcome, action item assignments for the training interventions that will result in the desired outcome, a description of how training effectiveness will be determined, and a status/results section.

The action plan forms the core of an annual presentation by each TPC to the TAB. It is a tool for capturing and reporting improvements in personnel performance that are linked directly to training interventions.
The training organization incorporates human performance training into all training sessions to reinforce management expectations and to improve worker performance. For example, all supplemental workforce personnel attend two hours of classroom human performance fundamentals training and two hours of lab exercises. The lab exercises consist of faulted plant work scenarios where the worker is asked to identify unacceptable plant or work conditions (i.e., FME, housekeeping, chemical control, confined space, etc.). These faulted scenarios are typically developed based on previous outage conditions which were identified as improvement opportunities.

Supplemental workforce personnel are also required to attend pre-outage human performance continuing training which typically consists of a review of OE from previous Brunswick outages as well as lessons learned from other utility outages. Prior to the outage, the ‘Human Performance Steering Committee’ participated in an INPO web cast meeting where plants shared outage related human performance issues. As a result of this meeting, Brunswick learned that other plants were seeing issues with the control of supplemental workforce as well as night shift personnel in general. Based on this feedback, targeted or focused observations were performed throughout the outage with an emphasis on night shift work and work being performed exclusively by supplemental workforce personnel.

Observation of work is a key element of improving human performance. A team of individuals composed primarily of training instructors is identified each year to conduct observations prior to and during the refueling outage to recognize negative as well as positive behavior. These observations are analyzed each shift and “real time” information is provided to the management team regarding potential emerging trends. An example of this was this past outage when the observations revealed that workers were not wearing proper hand protection in contaminated areas. This information was shared with the workforce and managers and the condition was corrected within 24 hours.
As a part of the Ignalina NPP preparation for decommissioning, the systematic analysis of decommissioning personnel training needs has been done, including feasibility study of planning, design and development of a decommissioning training center. The overall aim of the project was identification of training requirements to meet pre-decommissioning and decommissioning training needs in the short and medium term. The project covered the following stages:
- Analysis of the Unit 1 expected decommissioning activities that require the training of the personnel. For each of identified field of activities the tasks were determined demanding the training of the personnel.
- Based on the tasks identified in the first stage, personnel training needs analysis was done as well as analysis of requirements for changing the existing training system with respect to the Ignalina NPP decommissioning. As a result, a training matrix was developed identifying number of people to be trained, number of trainers, the scope of training programmes and the projects for which they are to be trained.
- In the 3rd stage, needs of training center facilities, infrastructures, equipment and technical means including funding were analyzed. International support and expertise was used in this project. Such systematic approach to training for decommissioning phase of the plant life cycle done before real start of specific decommissioning activities can be considered as a good practice as it gives the plant an opportunity to prepare personnel with required qualification in proper timing and a cost-effective way.

Well thought-out organization of continuing training for operating shift crews employing the recreation activities for the personnel.

A continuing training programme for operating shift crews includes both training and health rehabilitation (at the specialized recreation facility). Annual continuing training for operating shift crews includes two training sessions, two weeks each. Every training day operating crew attends Training Centre only for four hours; the rest of the day the crew spends at the specialized recreation facility located at beautiful place close to the river. Personnel recover their health according to the individual prescriptions, including individual diet and rehabilitation activities. The recreation facility is equipped with different means for active rest: gym, sauna, and other premises for rehabilitation. An operating crew works in special conditions (rotating shifts, stresses, etc.); and it is crucially important for safety to provide a possibility to recover health during total four weeks per year. As a result of sport events the team spirit is developing, which is considered to be an important factor for safe operation. Such training programme arrangement allows also a significant increase of training effectiveness (it is well known fact that human ability to effectively receive information decreases significantly after four-five hours of intensive learning).
On-line Training Management System

An on-line management system using business data processing software has been implemented at the plant. This system enables access to training services and allows the plant to effectively track personnel qualification.

Training and qualification records are centralized in a database, accessible from within the company network by all employees and their supervisors. Individual qualification records are linked within this system to the work planning process such that work planners are notified if they attempt to schedule work to be performed by individuals whose qualification has lapsed.

Initial and continuing training are scheduled as required by specific training programmes. However, complementary training courses are selected by the individual, approved by the supervisor and scheduled for implementation through this same system. Employees have the ability to select from courses already entered into the database or to input requests for new training services. The system displays a training calendar for each individual to assist in course scheduling. Enrolled students are automatically reminded of upcoming courses at one month before, one week before and one day before the scheduled class.

Important incoming documents are scanned on receipt and electronically distributed to responsible plant personnel through the work flow system integrated into this software. Managers and supervisors use this system to further distribute important information and operational experience items to their employees. This feature is just one of many customizations of the business software that has been further enhanced by Neckarwestheim personnel for use at the plant.

This system has resulted in better control of work processes through automatic personnel qualification verification. Delays in course scheduling have been reduced. The software facilitates re-scheduling because Central Services Training Section is automatically notified when courses are 80% full. Notification has enabled the training section to look ahead and schedule additional classes to accommodate need. Course attendance has been improved by automatic notifications sent to enrolled students.
Computerized training management system.

A comprehensive computerized training management system for planning, organizing and training record keeping has been implemented in the Training Centre of KhNPP. This software is used to setup annual, monthly training plans and reports; to setup schedules and track the advancement; to easily access the training and regulatory documentation and to keep reports of individual training history.

The system has been developed on the basis of existing experience and makes it possible to optimize training planning and record keeping; it has been recommended by the Headquarters of NAEK Energoatom for adoption by all Ukrainian NPPs Training Centres.

The system comprises interconnected modules and supports; yearly and monthly planning of training; compilation of reports and schedules; maintaining of training records; drafting and supervision of training departments’ plans execution; keeping and providing access to electronic documents such as design, regulatory, administrative and organizational documents and training materials; tracking of individual training history; assignment of tasks and follow-up of actions as well.

When a regulatory requirement is modified, this application provides the list of all training documents that are potentially impacted and must be reviewed.

All inconsistencies in the training planning, like the reservation of a classroom or instructor for two different training sessions at the same time are detected and immediately signalled for corrective actions.
Training feedback evaluation process

Rivne NPP has implemented and managed effectively a unique training feedback evaluation process (Methodology for evaluation of the training 181-9-M-QA) for all the Rivne NPP personnel levels (from the level of the workers and field operators to the Director General Deputies). It represent an unusual and good approach to review the effectiveness of the training process and individuals’ qualification. Also all evaluators have passed a special training programme about the training evaluation process. The TC personnel receive special training on evaluation skills in the Engineering and Technical Center of Nuclear Personnel Training in Kiev. The programme for initial training of department managers (training for new job position) contains topics on methodology of the SAT and evaluation process. The operating shift personnel also receive such training within the frame of continuing training in TC. The above described evaluation practice was implemented at Rivne NPP in the period from 2004 to 2008.

The Methodology for evaluation of training (181-9-M-QA) covers the following aspects:
- Entry level evaluation of trainees' knowledge;
- Intermediate evaluation of knowledge;
- Exit level evaluation of knowledge after each stage of training (theoretical training, simulator training, on-the-job training);
- Assessment of training programmes;
- Assessment of training arrangement (questionnaire);
- Evaluation of instructors.

For specific operating positions the department managers perform the training feedback assessment at the plant 9-12 months after assumption of independent job performance by the trainees. Also the personnel training efficiency is assessed in external educational institutions.

In the course of the simulator training the operating personnel provide a self-assessment for simulator training session and also they evaluate their colleagues.

The important aspect of training quality assurance is a feedback process based on the training evaluation results. The feedback process ensures continuous monitoring of training indicators and criteria, and provides benchmarking against the established norms. The specially trained personnel in the Training Centre perform integrated analysis of training efficiency, develop the corrective measures, aimed at improvement of the training components and entire training system at the Rivne NPP. The information about the training evaluation results is communicated to all people involved in the process (managers of all levels).
The process of trainee assessment is well developed and implemented and is comprehensive.

Task observations performed by management are an essential means of confirming that staff have acquired and maintained the requisite skills, as they enable management to assess staff skills in their immediate working environment. As they require management presence in the field, they are also an effective means of:

- implementing good practices across the board
- detecting deficiencies
- discussing work-related issues with the staff (cooperation).

These observations are performed during the initial work authorization phase for recently hired staff, and during the authorization renewal phase for more experienced staff.

This practice is implemented by a number of crafts:

Initial authorization: The training academy arranges for management to perform task observations in order to approve the acquisition of skills at the end of the basic training module, for all specialities.

The training academy also arranges for management to perform task observations in order to issue partial work authorization during the specific training module, for operations and I&C staff.

Renewed authorization: The chemistry, fuel, risk prevention and safety/quality functions also implement this practice. Operations has drawn up observation reference standards and has already initiated the programme (underway for shift managers).

The practice is already implemented within the mechanical maintenance and I&C and is now being extended across the plant under the supervision of the human resources function. A formal agreement has been signed with the DPN (corporate level organization) and the plant has committed itself to the regulator for implementing this practice throughout the plant. It forms part of the human resources macro-process (Integrated Management System - action A141). A deadline has been set for the end of 2009.

Plant results demonstrate that this good practice produces the expected results.
The Nuclear Training Center (NTC) works with universities for basic nuclear training.

Basic nuclear courses are organized in the universities before new-comers arrive in the company. These courses are defined by the Nuclear Training Centre department and the universities.

As China Guangdong Nuclear Power Company (CGNPC) engages about 1000 employees per year, the Nuclear Training Centre has set up 2 forms of partnership.

- Partnership Training

Under the Partnership Training Agreements between CGNPC and 11 domestic universities, CGNPC pre-employs some grade-three (3rd year) students from the 11 universities and signs Pre-employment Agreements with those selected. Those students shall, in addition to the curriculum of their own professions, study professional nuclear power courses in accordance with the education program agreed between CGNPC and the universities in their grade-four (4th year). Upon completion of their study, they will become employees of CGNPC.

It is through this Enterprise-university Partnership Training, CGNPC can secure the selection of outstanding new staff in terms of quality and quantity.

- External Pre-job Training for New Graduates

New staff recruited from university directly will be dispatched to the designated universities according to their professions and demands to receive a 5-month external pre-job training.

Contents: 13 courses on basic theoretical knowledge of atomic energy, thermodynamics and electricity.

Objective: to enhance the new staff with basic theoretical knowledge of different professions required in nuclear power plants in a short time

As a result new-comers engaged by the company have good background knowledge on nuclear theories and they can immediately start with specific training according to their jobs. This kind of relationship improves knowledge of the students and decreases the gap between students and employees.
Integrated approach to recruiting, selection, psychological diagnostics and training of new plant employees.

The plant has developed and implemented an integrated, active and well defined program for the recruiting, selection, psychological diagnostics and training of new plant employees. The program is yielding high potential entry level employees and has supported consistently high pass rates for licensed operators, greater than 90%, over the past ten years. The process was designed and is managed by the recruitment and human resources development departments in conjunction with nuclear plant training and production groups.

Recruiting begins with company collaboration at secondary schools and technical universities. Twice a year, a three day nuclear training experience is conducted. Students and teachers participate in classes, competitions, workshops and plant tours designed to help students learn about nuclear power plant operations and its working conditions.

Preconditions for participation include academic requirements, teacher recommendations and competence screening for their potential to work as a secondary system operator. This combination of prerequisites and a desire by the student for further consideration makes them eligible for company scholarships for study at a technical university.

University students participate in a two week ‘Summer University’ each year. This combined integrated experience allows the student to assess if a nuclear career is right for them, and for the company to assess if the student has a high potential for future success as an employee.

Selection is focused on licensed operators and other specialized technical areas. The selection process uses a corporate database of applicants. Each applicant must meet specific requirements such as level of education, professional qualification and experience. Competence testing is a key element of candidate screening. It is used to predict successful completion of theoretical and practical training and the potential for an individual to work as a safe, reliable and long-term productive employee starting as a secondary system operator having future potential. Professional psychologists perform comprehensive diagnostics focused on performance ability and personality characteristics including, technical talents, combination thinking, stress resilience, ability to concentrate, emotional stability, conservative approach to problem solving, discipline, reliability, adherence to rules, teamwork and avoidance of substance addictions. Results of competence testing are part of an employee’s long term profile.

Licensed operator training throughput rates and overall employee job satisfaction data indicate this integrated approach to recruiting, selection, psychological diagnostics and training is being applied successfully to nuclear plant employee training and development.
Station Use of the Learning Management System (LMS) for the daily qualification verification.
This is a useful tool to check personnel qualification, provide information for future training and supply automatic notifications of upcoming training.
The benefit of this tool is that every individual and manager can easily check if they are qualified to performing the work before they do it.
Plant personnel access the Learning Management System (LMS) to ensure that they are qualified to perform work. Using their own computer work stations, workers and supervisors in the station line organizations access the on-line database of training and qualification records. Workers perform this qualification check at least daily or prior to performing work to ensure that they are qualified to perform their assigned work. This is a view of LMS used to check qualifications (also known as “curriculum status”).
In addition to checking qualifications, plant personnel can check if they are scheduled for future training sessions and can also check if they are due to complete web-based training. If web-based training is required, the worker is able to select the item in LMS and complete it.
LMS also provides automated email notifications to personnel of upcoming open training requirements or class enrolment information, which can be added to the individual's calendar. A daily computer reminder and a culture of verifying that personnel are qualified to perform work ensure work in the station is performed to management’s expectations. Daily checks also ensure that training is attended as scheduled, and that qualifications do not lapse due to incomplete training requirements.

Qualification Health Reports
The plant identified all skills required in the plant and developed an indicator to show the qualifications and the number of staff required. Each accredited training discipline is required to maintain a qualification health report. These reports are reviewed at the Plant Training Advisory Board.
• These reports are an easy to understand tool to monitor the required qualified staff for specific works.
• The qualification health reports in all of the accredited training disciplines illustrate and facilitate the strategic management of worker qualifications.
• These reports allow line departments to identify qualification areas where additional focus is needed to maintain qualification levels. The line departments can identify to station management those qualifications that require additional attention due to unique qualifications or limited candidates.
Laguna Verde, Mexico

Extensive benchmarking, self-assessment and the review process on Training and Qualification contributed to the significant enhancement of the initial and continuing training programs at the plant.

The Training Centre has established a strong self-evaluation and benchmarking program which includes the following activities:
- One self-evaluation per year on different training topics such as “The use of OE on Training Programs”, “Simulator training” and “On-the-Job training program”. Taking advantage of corporate agreements, training has incorporated into these self-evaluations some experts from other Training Centres.
- Two self-evaluations per year for each SAT based training program which includes the tracking of personnel performance onsite, the tracking of Condition Reports and its relationship to training requirements, the OE and plant modifications feedback. All this is conducted in addition to the training schedule tracking.
- Benchmarking with different NPPs in order to enhance plant training programs resulted in a very detailed system analysis and the design of the plant training management system. Eight benchmarking visits to plant training departments from different countries and ten visits of plant training staff to various NPPs were conducted in the period from 2010 to 2012. Other enhancements have been implemented after benchmarking activities of the simulator.

Mühleberg, Switzerland

At the plant a method for preserving and transferring knowledge has been implemented so that operating the plant safely, reliably, efficiently and with care for the environment is achieved.

Not all knowledge and experience is documented, but it exists as tacit knowledge of each individual employee. Preserving this know-how and handing it down constitutes a major challenge. The plant has developed a procedure for the retention of organisational knowledge including several methods e.g. exit reviews, technical seminars, senior consultancy and overlapping periods, travelling and course reports.

BKW actively reinforces and supports the plant in its succession planning.
In the last 10 years, the responsibility was handed over early to seven managerial successors, so that the previous holder of the position was available in an advisory role as Senior Consultant for at least two years. In the case of a more technical role detailed exit reports have been produced and know-how handed down to wider audiences at various technical meetings.

The early succession planning with the associated transfer of knowledge has proven successful. As a result, safety and plant availability were maintained at a high level in spite of long-standing managers changing their position or leaving the company.
A Management of Training & Authorization (MANTRA) system has been developed by station Nuclear Training Centre (NTC) for the management of training activities. The system has features for:
—Generating training need;
—Plan and develop training programme;
—Conduct of training;
—Feedback and evaluation of training programme.
This training management system has helped in implementation of SAT (Systematic Approach to Training) at station NTC. All the steps of SAT are carried out through this software. This software has additional modules for Induction Training, Trainer development, Line manager feedback and Line management training.
Station NTC is responsible for centrally coordinating all the types of training conducted at eight unit site, which means organizing different types of training such as Managerial training, Simulator training, License & Qualification training, Performance based training, Needs based training and Safety training catering to 2649 personnel. The enormity of job can be sensed from the volume of training required at site, therefore MANTRA software programme was developed, which is of great help in organizing these training programmes and makes retrieval of training related data easy.
This system integrates Line managers with NTC, as Line managers play key roles in identifying and analyzing training needs. They can immediately address their needs through the online training need generation module of MANTRA. Line managers also give feedback on performance of their employee post training, which helps in assessing the effectiveness of training programs conducted and performance of NTC.
MANTRA has been designed with the objective of:
—Generating annual training calendar;
—Receiving training needs from line managers;
—Analyzing, plan & develop training;
—Assigning coordinator & registering training programme;
—On line generating of training notifications & mail to all concerned;
—Receiving on-line nominations for training;
—Organizing training programme;
—Generating detailed training report & distribution through mail;
—Obtaining training feedback from line managers;
—Conducting qualification & licensing exams/interviews;
—Recording line management training;
—Online display of “Program in progress” and “Forthcoming programs”;
—Obtaining Records related to training conducted.
In addition to above MANTRA has following additional features:
—Induction training module: Induction trainee batch details, faculty, mark-sheet generation and training schedule preparation are done through MANTRA.
—Station duty module: NTC employees can plan their station duty and fill the station duty proposal through this system.
—Line manager feedback module: Feedback from line managers is automatically taken through this system two months after the completion of training. This helps in analysing effectiveness of training.
—Line management training module: Record of Line management training conducted at plant is updated through this module.
Dynamic skills mapping process for all staff members contribute to the significant enhancement of the overview of collective and individual skills and provides proactive management in the loss of skills. The plant has established a skills mapping process supported by a PC application, which has the following benefits:

- 5-year forward planning of collective and individual skills, focusing on rare or critical skills
- Overview of team and job functions and areas of skill
- Identification of targeted required resources
- Measuring gaps between current status and set targets
- Proactive management in the loss of skills based on specific training, shadow-training, recruitment campaigns, etc.
- Tool interfacing with forward planning (quantity and quality) to provide the ideal requirements when submitting requests for new recruits.

The benefits of this process are:

- Creation of forward-looking recruitment plans according to department priorities and required job profiles
- Skills transfer including development of apprenticeship
- Competence retention
- Specific training actions within departments

Gravelines, France

Mission Date: 12-29 Nov., 2012
A skills mapping application is provided that employs a polar chart illustration to provide managers with a clear graphical presentation of the current status of skills in departments on the plant to identify skills availability, including critical areas, which makes a significant contribution to effective skills management and planning of staff training for up to a 5 year period (Skills Mapping Tool).

The plant has implemented and developed a generic computer based skills mapping application to illustrate the skills available on the plant, which includes the following features:

– Graphical presentation using a polar chart of personnel skills by department and team.
– Clear illustration of availability of skilled persons in each area.
– Graphical comparison of current skills levels with future values, and identification of gaps.
– Data is collected for a 5-year period.
– Graphical presentation of skills variation with time.

The benefits of the process are that it allows management to present data graphically to:

– Compare current skills to critical and optimum levels, and future skills targets.
– Identify skills shortages, scarce skills and skills that will be lost in the future.
– Inform the staff recruitment profile.
– Illustrate the effect of retirements/transfers on skill levels.
– Balance skills within departments and teams etc.
– Develop individual skills to meet local needs.
– Identify skilled individuals who could make a contribution in other areas (professional development).
– Identify future training requirements within departments.

The plant considers that, by using a graphical illustration of the data, the plant has improved the management of skills on the site including the identification of training requirements. The tool co-ordinates and presents data graphically in a way that is easily assimilated and reduces the amount of time needed to interpret the data.