The information contained in this document cannot be changed or modified in any way and should serve only the purpose of promoting exchange of experience, knowledge dissemination and training in nuclear safety.

The information presented does not necessarily reflect the views of the IAEA or the governments of IAEA Member States and as such is not an official record.

The IAEA makes no warranties, either express or implied, concerning the accuracy, completeness, reliability, or suitability of the information. Neither does it warrant that use of the information is free of any claims of copyright infringement.

The use of particular designations of countries or territories does not imply any judgment by the IAEA as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
1. Background - definitions

- **Safety**: prevention of accidents and mitigation of consequences should accidents occur
- **Security**: (for NI) protection of NI from malevolent actions (theft or sabotage)
- **Safeguards**: actions and inspections to MS with the aim of the application of the NPT.
- **Sabotage**: Malevolent act against a NI (either by intruders or stand-off) with the aim to cause uncontrolled release of radioactive material
Outline of Presentation

1. Background
2. Objectives of the Guidelines
3. Scope
4. Key Steps in the Methodology
 - Threat Evaluation
 - TT-1 and TT-2 Specification
 - Safe shutdown/success path
 - Capacity evaluation, plant walkthrough, decision process
5. Conclusions
2. Objectives of the Guidelines

- Provide a methodology that results in a systematic study to verify survivability of the basic control, cool and contain functions of nuclear installations.

- Utilize existing techniques of safety margin assessment for beyond design basis events.

- Provide at least one safe shutdown or success path for selected threat scenarios (this depends on the RB requirements)
1. Background

- September 11, 2001 changed the threat perception
 - Sophistication of planning
 - Suicidal nature of the act

- Regulators required immediate security upgrades

- Regulators also asked for robustness reviews

- IAEA Document process started for a systematic approach to verify survivability
3. Scope

- Applies to complex nuclear facilities: power plants, research reactors, fuel fabrication, etc.
- Events considered:
 - intrusion into the site
 - initiated outside the site area: aircraft, missile, etc. (i.e. stand off attacks)
 - malevolent vehicle
 - multiple modes
- Out of scope:
 - theft, economic loss
PROTECTION OF NUCLEAR FACILITIES AGAINST SABOTAGE

Threat Assessment

Consequences

TT-1

TT-2

Extreme Load Evaluation

State’s Responsibility

Response

State’s Security

Sabotage Protection Design & Evaluation

• Detection
• Delay
• Response/Recovery

Emergency Response

Acceptable Risk
PROTECTION OF NUCLEAR FACILITIES AGAINST SABOTAGE

Threat Assessment

Consequences

TT-1

TT-2

Vital Areas Identification

- System Design
- Facility Layout
- Safety Measures
- PPS

Emergency Response

State's Responsibility

State's Security

Acceptable Risk

System Design & Evaluation

• SSC capacity evaluation
• SA Crisis management
PROTECTION OF NUCLEAR FACILITIES AGAINST SABOTAGE

Threat Assessment

Consequences

TT-1

Extreme Load Evaluation

State’s Responsibility

Response

State’s Security

Acceptable Risk

Sabotage Protection Design & Evaluation

Vital Areas Identification

• System Design
• Facility Layout
• Safety Measures
• PPS

Detection
• Delay
• Response/Recovery

SSC capacity evaluation

SA Crisis management

Emergency Response
<table>
<thead>
<tr>
<th>Tier</th>
<th>Category (Example)</th>
<th>Evaluation Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ultra-light or small general aviation aircraft</td>
<td>Design basis – minimal releases & repairable damage</td>
</tr>
<tr>
<td>2</td>
<td>Commercial airliners & business jets</td>
<td>Margin assessment techniques – low releases</td>
</tr>
<tr>
<td>3</td>
<td>Very large commercial airliners</td>
<td>Severe accident management techniques – limit releases & bring to permanent safe state</td>
</tr>
</tbody>
</table>
Consequence Evaluation

• Potential Impact on nuclear facility:
 • operating unit,
 • storage of spent fuel & wastes,
 • transportation (within the facility)

• Safety of Plant Personnel and the Public
 • Radioactive release
 • Potential exposure to plant personnel
 • Potential exposure to the public
 • Potential damage to the environment
 • Collateral effects (explosions, hazardous materials release, …)

• Others
 • Loss of output of facility
 • Loss of public confidence in NPP safety and security
TT-2 Events: Stand off type attacks

- Input: List and Specification of TT-2 Events from Box 4
- Refine Definition
 - Site characteristics
 - Plant characteristics
 - Type and number of co-located facilities
- Screen Out events
 - Magnitude/distance
 - Probability (conditional)
Example of Site Characteristics: Topography

G2 & G1

Muhleberg
Extreme Environment Matrix: the start of a family of “load” tables

<table>
<thead>
<tr>
<th>Threat Scenario No.</th>
<th>Threat Scenario Description</th>
<th>Impact</th>
<th>Blast</th>
<th>Heat/fire</th>
<th>Hazardous Materials Release</th>
<th>Smothering</th>
<th>Flooding</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boeing 767 fully fueled crash into NPP site</td>
<td>1,2</td>
<td>None</td>
<td>1</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extreme Environment Matrix

<table>
<thead>
<tr>
<th>Threat Scenario No.</th>
<th>Threat Scenario Description</th>
<th>Impact</th>
<th>Blast</th>
<th>Heat/fire</th>
<th>Hazardous Materials Release</th>
<th>Smothering</th>
<th>Flooding</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boeing 767 fully fueled crash into NPP site</td>
<td>1,2</td>
<td>None</td>
<td>1</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-2 IMPACT PARAMETER DEFINITION MATRIX

<table>
<thead>
<tr>
<th>Missile Type/No.</th>
<th>Description</th>
<th>Mass/Weight</th>
<th>Shape/configuration</th>
<th>Impact angle</th>
<th>Impact velocity</th>
<th>Relative hardness</th>
<th>Fire</th>
<th>Explosion</th>
<th>Other</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Boeing 767 fuselage fully fueled</td>
<td>200,000 kgm</td>
<td>Flexible</td>
<td>Less than 30 deg to horizontal</td>
<td>350 knots</td>
<td>Flexible</td>
<td>1</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>Boeing 767 engines as projectiles</td>
<td>3,500 kgm</td>
<td>3 meters diameter/rigid cylinder</td>
<td>Less than 30 deg to horizontal</td>
<td>350 knots</td>
<td>Rigid</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
TABLE 3-3 EXPLOSION/BLAST PARAMETER DEFINITION MATRIX

<table>
<thead>
<tr>
<th>Explosion No.</th>
<th>TNT Equivalent</th>
<th>Stand Off Distance</th>
<th>Incident</th>
<th>Reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PRESSURE PULSE
Heat/Fire Parameter Definition Matrix

Table 3-4 Heat/Fire Parameter Definition Matrix

<table>
<thead>
<tr>
<th>Fire No.</th>
<th>Description</th>
<th>Combustible/ignition</th>
<th>Quantity</th>
<th>Heat Potential/Temperature</th>
<th>Duration of Burn</th>
<th>Other</th>
<th>Building/yard</th>
<th>Quantity</th>
<th>Type</th>
<th>Ignition likelihood</th>
<th>Burn duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jet fuel fire from Boeing 767</td>
<td>Yes</td>
<td>50,000 kgm.</td>
<td>1200 deg F</td>
<td>1-6 hrs.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Hazardous Material Release Definition Matrix

TABLE 3-5 HAZARDOUS MATERIAL RELEASE DEFINITION MATRIX

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Material Description</th>
<th>Quantity</th>
<th>Smothering effect – personnel</th>
<th>Smothering effect – components</th>
<th>Lethal or disabling effect – personnel</th>
<th>Duration</th>
<th>Penetration extent</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extreme Environment Evaluation: End Product

<table>
<thead>
<tr>
<th>Plant Area</th>
<th>Engineering Environmental Load Description</th>
<th>Impact</th>
<th>Blast</th>
<th>Heat/fire</th>
<th>Hazardous Materials Release</th>
<th>Smothering</th>
<th>Flooding</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zone 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yard 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Key Steps: Safe Shutdown Path

- **Vital Areas Identification**
 - System Design
 - Facility Layout
 - Safety Measures
 - PPS

- **SSC capacity evaluation**

- **SA Crisis management**

- **Detection**
- **Delay**
- **Response/Recovery**
Safe Shutdown Path

Basic Philosophy:
(DBT or BDBT ?)

- Define one or more safe shutdown paths to:
 - Shutdown the facility & maintain safe shutdown
 - Provide for heat sinks
 - Contain radioactive materials
 - Provide monitoring & control functions

- Selection criteria:
 - Able to demonstrate margin or capacity
 - Include physical protection systems
 - Minimize number of vital areas
 - One safe shutdown path required, but redundant paths beneficial
| SSEL No. | SSC Name | SSC ID No. | Description | Threat Scenario No. | Building | Elevation | Room/Compartment | Vital Area | Impact | Blast | Heat/fire | Smothering | Flooding |
|----------|----------|------------|-------------|---------------------|----------|-----------|-------------------|------------|--------|-------|-----------|------------|----------|---------|
4. Key Steps: Capacity evaluation, plant walkthrough, decision process

- **Capacity Evaluation:**
 - by engineering standards, analysis, expertise
 - experimental & experience data
 - testing
 - liberalized acceptance criteria

- **Plant Walkdown**
5. Conclusions

• These guidelines provide a methodology whereby nuclear facility operators will have the capability to:

 • select relevant threat scenarios including TT-1 and TT-2
 • highlight existing strength & robustness
 • identify vulnerabilities
 • For existing plants, decide on upgrades or other means to reduce public risk
 • document the process
Decision Process

• Methodology includes 4 major decision points:
 • Spectrum of threats
 • Division of threat responsibilities
 • Evaluation of: SSCs, physical protection systems, operator action
 • Use of off-site features & capabilities & emergency response measures

 to arrive at an overall position of acceptance

• Iteration between all decision points may be required to arrive at acceptable solutions

• Regulatory Body involvement essential in the decision process
Recent Requirements for Large ACC

- USA: Considered beyond design basis – include impact and subsequent fire
- Malevolent scenario but it is not classified as ‘threat’
- NPP should demonstrate that BOTH the reactor core and the spent fuel are protected through EITHER cooling OR containment functions.
Recent Requirements for Large ACC

• Canada considers similar scenario and calls it a ‘beyond design basis threat’
• EC demand the consideration of a similar scenario for new NPPs under the obligation of the states vis-à-vis the Euratom Treaty – article related to protection of the investment
• Olkiluoto 3 and Belene NPP have considered such a scenario in their design