IAEA SAFETY STANDARDS SERIES No. SSG-xx

Status: Addressing Member States comments
SPESS Step 10,
Proposals from NSOC-SSDS as input into discussions on structure + conclusions of the CSM
Reviewed in SSDS (Nikolaki, Asfaw)

FORMAT AND CONTENT OF THE PACKAGE DESIGN SAFETY REPORT FOR THE TRANSPORT OF RADIOACTIVE MATERIAL

SPECIFIC SAFETY GUIDE

INTERNATIONAL ATOMIC ENERGY AGENCY
VIENNA, 20xx
Contents

1. INTRODUCTION .. 1
 BACKGROUND .. 1
 OBJECTIVE .. 1
 SCOPE .. 2
 STRUCTURE .. 2

2. GENERAL RECOMMENDATIONS FOR THE PACKAGE DESIGN SAFETY REPORT .. 3

APPENDIX I. EXCEPTED PACKAGES .. 6
APPENDIX II. INDUSTRIAL PACKAGES ... 11
APPENDIX III. TYPE A PACKAGES ... 19
APPENDIX IV. TYPE B(U), TYPE B(M) AND TYPE C PACKAGES ... 27
APPENDIX V. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING FISSILE NUCLIDES .. 40
APPENDIX VI. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING 0.1 KG OR MORE OF URANIUM HEXAFLUORIDE ... 52

REFERENCES .. 59

ANNEX I .. 60

MATRIX OF APPLICABLE REQUIREMENTS OF THE TRANSPORT REGULATIONS FOR DIFFERENT PACKAGE TYPES AND ADDITIONAL PROVISIONS .. 60

ANNEX II .. 66

REFERENCE DOCUMENTS USED BY COMPETENT AUTHORITIES FOR TECHNICAL ASSESSMENTS ... 66

CONTRIBUTORS TO DRAFTING AND REVIEW ... 68
1. INTRODUCTION

BACKGROUND

1.1. Requirements for the safe transport of radioactive material are established in IAEA Safety Standards Series No. SSR-6 (Rev. 1), Regulations for the Safe Transport of Radioactive Material, 2018 Edition [1] (hereinafter referred to as ‘the Transport Regulations’).

1.2. Packages intended for the transport of radioactive material are required to be designed to meet the applicable national and international regulations, and, as such, documentary evidence of compliance of a package design with the applicable regulations will be required.

1.3. For package designs that require approval by a competent authority, the package design safety report (PDSR) is the basis for the application to the competent authority for approval of the design.

1.4. For package designs where competent authority approval is not required, documentary evidence of compliance of the package design with all applicable requirements is required in order to meet para. 801 of the Transport Regulations. In addition, for packages that do not require competent authority approval, some form of ‘certificate of compliance’ could be applied (see para. 801.3 of IAEA Safety Standards Series No. SSG-26 (Rev. 1), Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material (2018 Edition) [2]) and the PDSR would be an appropriate form of documentary evidence of compliance with the Transport Regulations.

1.5. In this Safety Guide, all documentary evidence of compliance of a package design with the Transport Regulations will be called a PDSR, irrespective of whether or not the package design requires competent authority approval.

1.6. This Safety Guide is based on the Transport Regulations. The Transport Regulations also constitute the basis of the United Nations Recommendations on the Transport of Dangerous Goods [3] and of international, regional and national regulations, for all modes of transport.

OBJECTIVE

1.9. The objective of this Safety Guide is to provide recommendations on the preparation of a PDSR to demonstrate compliance of a design of a package for the transport of radioactive material with the Transport Regulations.

1.10. This Safety Guide is intended for use by applicants for approval of package designs, in case of package designs subject to competent authority approval, and for package designers and/or consignors, in case of package designs not requiring competent authority approval, to demonstrate compliance with the requirements of the Transport Regulations applicable to the respective package type.

1.11. This Safety Guide could be also used to demonstrate compliance with any national or international regulations relating to package design, if the national or international regulations are based on the Transport Regulations. This Safety Guide does not replace the Transport Regulations or limit their application. Moreover, following the recommendations of this Safety Guide does not relieve the package designer from the need for any additional analysis associated with a specific package design.
1.12. This Safety Guide provides an example of the structure and format for a PDSR but does not intend to replace any existing format for a PDSR that might be determined by national regulations or standards for packages intended for domestic use only.

1.13. In the event of a conflict or anomaly between the provisions of the Transport Regulations and this Safety Guide, the requirements in the Transport Regulations apply. For regulatory purposes, reference should be made to the detailed provisions of the Transport Regulations.

SCOPE

1.14. This Safety Guide covers package designs requiring competent authority approval in accordance with para. 802 of the Transport Regulations for the following types of package:
 — Type B(U) packages;
 — Type B(M) packages;
 — Type C packages;
 — Packages containing fissile material not excepted by paras 417, 674 or 675 of the Transport Regulations;
 — Packages designed to contain 0.1 kg or more of uranium hexafluoride.

1.15. This Safety Guide also covers package designs not requiring competent authority approval for the following types of package:
 — Excepted packages;
 — Industrial packages Type 1 (Type IP-1);
 — Industrial packages Type 2 (Type IP-2);
 — Industrial packages Type 3 (Type IP-3);
 — Type A packages.

1.16. Designs of special form radioactive material, designs of low dispersible radioactive material, unpackaged low specific activity material (LSA-I material) and unpackaged surface contaminated objects (SCO-I and SCO-III) are outside the scope of this Safety Guide.

STRUCTURE

1.17. Section 2 of this Safety Guide provides general recommendations on the PDSR. Appendices I to IV describe the information that should be provided in the PDSR for excepted packages, industrial packages, Type A packages, and Type B(U), Type B(M) and Type C packages, respectively. Appendix V describes the additional information that should be provided in the PDSR for packages containing fissile material. Appendix VI describes the additional information that should be provided for packages containing 0.1 kg or more of uranium hexafluoride. Annex I provides a matrix of the applicable paragraphs of the Transport Regulations to be included in the demonstration for compliance for each package type and additional provisions for packages containing fissile nuclides and packages containing 0.1 kg or more of uranium hexafluoride. Annex II provides a list of reference publications used by different competent authorities for technical assessment of the package design.
2. GENERAL RECOMMENDATIONS FOR THE PACKAGE DESIGN SAFETY REPORT

2.1. The person or organization that is responsible for the design of the package is known as the package designer. The package designer should also issue the PDSR. For each package design there should be only one package designer.

2.2. In accordance with para. 306 of the Transport Regulations, a management system is required for package design. The PDSR should be a controlled document\(^1\), approved for issue in accordance with the package designer’s management system. It should be signed and dated and should indicate its revision number or issue status. The PDSR should include a contents list and the number of pages and annexes of the PDSR should be indicated. Any changes between revisions of the PDSR should be clearly documented. The PDSR should include a record of its production, review and approval by the package designer. A PDSR is typically divided into two parts. Part 1 of the PDSR should contain the information that supports the demonstration of compliance with the Transport Regulations. Part 2 of the PDSR should contain detailed technical analyses supporting this information. Figure 1 shows a generic structure and the recommended contents of a PDSR that apply to all package types.

2.3. The structure of the PDSR should be the following:

- Table of contents of the PDSR
- Part 1: Information supporting the demonstration of compliance with the Transport Regulations:
 - Administrative information;
 - Specification of the contents;
 - Specification of the packaging;
 - Ageing considerations;
 - Package performance characteristics;
 - Compliance with regulatory requirements;
 - Package Operations;
 - Maintenance;
 - Gap analysis programme;
 - Management system;
 - Package illustration.
- Part 2: Technical analyses:
 - Structural analysis;
 - Thermal analysis;
 - Containment design analysis;
 - Dose rate analysis;
 - Criticality safety analysis;
 - Other analyses.

2.4. The following general considerations should be taken into account for all technical analyses in Part 2 of the PDSR:

- Indication of the package design;

\(^1\) A controlled document is a document that is approved and maintained within a management system.
— Package design acceptance criteria\(^2\) and design assumptions;
— Description and explanation of the choice of the analysis methods;
— Analysis of the package design;
— Comparison between the acceptance criteria and the results of the analyses.

2.5. The PDSR may be compiled as a single document or as an integrated set of individual documents. Each individual document in Part 1 and in Part 2 of the PDSR should also be a controlled document. Each individual document in Part 2 of the PDSR should be produced and verified by specialists in the technical area being assessed.

2.6. The scope and technical content of the PDSR should be set at the appropriate level for each type of package, by adopting a graded approach consistent with para. 104 of the Transport Regulations. Depending on the package type, some of the items included in the contents of the PDSR in para. 2.4 are not needed. More detailed information on the content of the PDSR for each package type is provided in Appendices I to VI.

2.7. A PDSR should contain controlled engineering drawings that show the details used in the demonstration of compliance with the regulations. For complex packages this may involve several big drawings, necessary for modelling and assessing the package for calculations relating to mechanical strength, heat transfer, dose rates and criticality. and are often called "design drawings". For simple packages, such as excepted packages, that do not need the same level of detail as complex packages for the demonstration of compliance, these drawings may be simple and are named "schematic drawings".

2.8. A reproducible illustration of the package should be included at the end of Part I of the PDSR. In accordance with para. 809 of the Transport Regulations a reproducible illustration not larger than 21 cm × 30 cm, showing the make-up of the package is requested to be part of the application for approval. This illustration does not need to be very detailed, should present an overview of the package and should fit in one page.

2.9. The international system of units (SI) should be used throughout the PDSR.

\(^2\) In the context of this Safety Guide, ‘acceptance criteria’ are the limits on the value of an indicator (i.e. loss of radioactive content, dose rate, temperature) specified by the regulatory body and used to assess the ability of a package to perform its function according to the design.
FIG. 1: Structure and contents of a PDSR.
APPENDIX I

EXCEPTED PACKAGES

I.1 This appendix provides specific recommendations on the information that should be included in Parts 1 and 2 of the PDSR for excepted packages. Further recommendations on excepted packages are provided in SSG-26 (Rev. 1) [2].

I.2 In accordance with para. 801 of the Transport Regulations, excepted packages require a PDSR. In accordance with the graded approach and taking into consideration the lower risks presented by excepted packages, the PDSR may be less extensive than for other types of package.

I.3 For packages containing fissile materials to be transported as excepted packages, one of the provisions of para. 417 of the Transport Regulations is required to apply.

I.4 Packages containing less than 0.1 kg of uranium hexafluoride may be classified as UN 3507 and transported as excepted packages under the provisions of para. 425 of the Transport Regulations. More information on the applicable regulations for the carriage of UN 3507 is available in Chapter 3.2 of Ref. [3].

I.5 For technical analyses, compliance of the package with the Transport Regulations should be demonstrated by the package designer either directly in item 1.4. of the PDSR or, if necessary, in Part 2 of the PDSR.

I.6 For each of the technical analyses in Part 2 of the PDSR, the following considerations apply:

(a) The package design that is being evaluated should be uniquely identified by precisely indicating a drawing of the packaging (see item 1.3. of the PDSR), including its revision number, and the specification of the contents (see item 1.2. of the PDSR), including its revision number.

(b) The acceptance criteria for the technical analyses and the package design assumptions relating to geometry and performance characteristics should be defined and justified when necessary. The acceptance criteria should be specified by the designer and should be derived from the criteria established by the regulatory body and from other applicable standards developed to meet the regulatory requirements. The design assumptions refer to the design specifications provided in items 1.2. and 1.3. of the PDSR or to other assumptions derived from the design specifications and used in the technical analyses.

(c) The results of the technical analyses should be compared with the acceptance criteria and package design assumptions, and regulatory compliance should be justified accordingly.

I.7. The following items listed in Figure 1 and para. 2.4 of this Safety Guide are not relevant to and not needed for excepted packages, and, therefore, are not included in Table 1:

— Part 1:
 - Ageing considerations;
 - Package performance characteristics;
 - Gap analysis programme;
 - Package illustration.
— Part 2:
 - Thermal analysis;
 - Containment design analysis;
 - Criticality safety analysis;
 - Other analyses.
TABLE 1. PDSR FOR EXCEPTED PACKAGES

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS OF THE PDSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The contents of the PDSR, Part 1 and Part 2, should be listed here, including the revision number of each individual document included in the PDSR.</td>
</tr>
</tbody>
</table>

Part 1

1.1. ADMINISTRATIVE INFORMATION

The following administrative information should be provided:

(a) Identification of the package designer (name, address, contact details);
(b) UN number of the package, if applicable;
(c) Modes of transport for which the package is designed and any operational restrictions;
(d) Reference to the applicable regulations for the specific package design, including the edition of the IAEA Transport Regulations for the Safe Transport of Radioactive Material to which the package design is referring.

1.2. SPECIFICATION OF THE CONTENTS

A detailed description of the permitted contents of the package design should be provided by stating at a minimum, the following information, as applicable:

(a) The general nature of contents (e.g. articles, instruments, metallurgical specimens, internal contamination of the package);
(b) The nuclides and/or nuclide composition, including daughter radionuclides;
(c) The physical and chemical state of the contents;
(d) The type and characteristics of the radiation emitted by the contents of the package;
(e) Limitations on activity, mass and activity concentrations, and heterogeneities in the distribution of the nuclides. Compliance with the activity limits for excepted packages in accordance with table 4, paras 423 and 424 (for transport by post), para. 425 (for uranium hexafluoride) and para. 427 (for empty packagings) of the Transport Regulations, as applicable, is required;
(f) A valid certificate for special form radioactive material or low dispersible radioactive material, when such material is included in the package;
(g) The mass of fissile material, the nuclides and the enrichment of the contents, when fissile material excepted under para. 417 of the Transport Regulations is included in the package;
(h) Other dangerous properties of the contents. In accordance with para. 618 of the Transport Regulations, any other dangerous properties (subsidiary hazards) of the contents of the package are required to be taken into account in the package design to be in compliance with the relevant transport regulations for dangerous goods. Additional information on the classification and design requirements for dangerous goods in accordance with the predominant subsidiary hazard can be found in Ref. [3], Chapter 3.3 Special Provision 290. Regarding packages containing less than 0.1 kg of uranium hexafluoride, that are excepted in accordance with para. 425 of the Transport Regulations and that are classified as UN 3507, additional information can be found in Chapter 3.2 of Ref. [3] (or of the applicable regulations for the carriage of dangerous goods);
(i) Other limitations to the contents.
APPENDIX I - EXCEPTED PACKAGES

TABLE 1. PDSR FOR EXCEPTED PACKAGES

(j) The A_1/A_2 values of the radionuclide to be carried in the package. The A_1/A_2 values for radionuclides that are not listed in table 2 of the Transport Regulations are required to be determined in accordance with paras 403 – 407 of the Transport Regulations and may be subject to multilateral approval in accordance with para. 403 of the Transport Regulations.

1.3. SPECIFICATION OF THE PACKAGING

The packaging design should be defined to the extent necessary to demonstrate compliance with the Transport Regulations, including the following information, as applicable:

(a) Schematic drawings;
(b) The overall dimensions and the maximum mass of the package when fully loaded;
(c) A list of all packaging components important to safety and their materials;
(d) The maximum normal operating pressure (in case of air transport).

Note: For radioactive material having other dangerous properties, the packing instructions appropriate to the other dangerous properties of the radioactive material are specified in Ref. [3], see paragraph 4.1.9.1.5 (or in the applicable regulations for the carriage of dangerous goods). For packages containing less than 0.1 kg of uranium hexafluoride, the packing instruction P603 in Chapter 4.1 of Ref. [3] is applicable.

1.4. COMPLIANCE WITH REGULATORY REQUIREMENTS

The PDSR should include a complete list of all paragraphs of the international regulations [1, 3] and other international or national regulations applicable to the respective package design.

Compliance of the package design with these regulations should be demonstrated in the PDSR. This could be done using a table or any other written format linking the appropriate items of the PDSR, where compliance is demonstrated, to the applicable paragraphs of the regulations.

The applicable paragraphs of the Transport Regulations for excepted packages are provided in a matrix in Annex I.

1.5. PACKAGE OPERATIONS

The minimum specifications for the following activities should be fully defined, as applicable:

(a) Assembling of the packaging components;
(b) Loading and unloading of the package contents;
(c) Controls before each shipment;
(d) Handling and tie down.

If written procedures with a detailed description of these activities are available, then reference should be made to these procedures.

1.6. MAINTENANCE

The minimum specifications for the following activities should be fully defined, as applicable:

(a) Maintenance and inspection before each shipment;
(b) Maintenance and inspection at periodic intervals throughout the lifetime use of the packaging and/or package.
APPENDIX I - EXCEPTED PACKAGES

TABLE 1. PDSR FOR EXCEPTED PACKAGES

When developing the specifications for maintenance to be included in this section of the PDSR, the following points should be taken into account:

— Inspection of the package before shipment might be sufficient for excepted packages.
— For single use packages, periodic maintenance does not need to be considered.
— If written procedures with details of the package maintenance activities are available, then reference should be made to these procedures.

1.7. MANAGEMENT SYSTEM

The PDSR should include the specification of the management system that is established and implemented by the package designer, as required in accordance with para. 306 of the Transport Regulations to demonstrate compliance with the relevant provisions of the Transport Regulations.

The management system should be commensurate with the complexity of the package design and should include a reliable document control system.

More recommendations on the management system for transport are provided in TS-G.1.4 [6].

Part 2

2.1. STRUCTURAL ANALYSIS

The results of the assessment of the mechanical behaviour (including, as applicable, analysis of fatigue, brittle fracture and creep) for routine conditions of transport should be included in this section of the PDSR.

The assessment of the mechanical behaviour should demonstrate compliance with the following requirements:

(a) The requirements for the lifting attachments established in paras 608-609 of the Transport Regulations;
(b) The requirements for the packaging attachments used for restraining the package to its conveyance during transport;
(c) For packages to be transported by air, the additional requirements for the package components of the containment system established in paras 619-621 of the Transport Regulations.

If the package is to be transported by air, the structural analysis of the containment system should take into account ambient temperatures and pressures that are likely to be encountered in routine conditions of transport as well as the specific temperature and pressure requirements for air transport. In particular, attention should be paid to ensure that any nuts, bolts and other retention devices keep their safety functions during routine conditions of transport even after repeated use. Further recommendations are provided in paras 607.1 - 621.3 of SSG-26 (Rev. 1) [2].

2.2. DOSE RATE ANALYSIS

The dose rates at the external surface of the package for routine conditions of transport should be assessed to demonstrate compliance with the requirements for excepted packages established in paras 516 and 423(a), as applicable, of the Transport Regulations.
TABLE 1. PDSR FOR EXCEPTED PACKAGES

The dose rate analysis should be based on assuming the maximum radioactive content of the package or such a content for an excepted package that would create the maximum dose rate at the surface of the package.

The dose rate analysis should take into account the most recent ICRP recommendations on nuclear decay data for dosimetric calculations (e.g. see Ref. [9]).

In accordance with para. 516.5 and 523.6 of SSG-26 (Rev. 1) [2], the maximum dose rate should be determined taking into account potential amplifying phenomena, such as internal movement of the contents, or, in the case of packages containing liquids, change in the state of the contents, including segregation and precipitation of the radionuclides.

If dose rate measurements are used in the analysis, the source used for the measurements should be representative of the radioactive contents specified in the package design.
APPENDIX II.
INDUSTRIAL PACKAGES

II.1 This appendix provides specific recommendations on the information that should be included in Parts 1 and 2 of the PDSR for industrial packages. Further recommendations on industrial packages are provided in SSG-26 (Rev. 1) [2].

II.2 Type IP-1, Type IP-2 and Type IP-3 packages require a PDSR. In accordance with the graded approach and taking into consideration the lower risks presented by Type IP-1 packages, the PDSR for Type IP-1 packages may be less developed than for other types of package.

II.3 For industrial packages containing fissile nuclides, in addition to the recommendations of this appendix, see also Appendix V.

II.4 For packages containing 0.1 kg or more of uranium hexafluoride, in addition to the recommendations of this appendix, see also Appendix VI.

II.5 For technical analyses, compliance of the package with the Transport Regulations should be demonstrated by the package designer either directly in item 1.5. of the PDSR or, if necessary, in Part 2 of the PDSR.

II.6 For each of the technical analyses in Part 2 of the PDSR, the following considerations apply:

(a) The package design that is being evaluated should be uniquely identified by precisely indicating a drawing of the packaging (see item 1.3. of the PDSR), including its revision number, and the specification of the contents (see item 1.2. of the PDSR), including its revision number.

(b) The acceptance criteria for the technical analyses and the package design assumptions relating to geometry or performance characteristics should be defined and justified when necessary. The acceptance criteria should be specified by the designer and should be derived from the criteria established by the regulatory body and from other applicable standards developed to meet the regulatory requirements. The design assumptions refer to the design specification provided in items 1.2. and 1.3. of the PDSR or to other assumptions derived from the design specifications and used in the technical analyses. All mechanical, thermal and shielding characteristics of each component of the package and acceptance criteria used in technical analyses should be defined.

(c) The safety demonstration of an IP-2 or IP-3 package design is required to be accomplished in accordance with para. 701 of the Transport Regulations by any of the following methods or by a combination thereof:

(i) The results of physical testing of prototypes or models of appropriate scale;
(ii) Reference to previous satisfactory demonstrations of a sufficiently similar nature. Test results of designs similar to the design under consideration are permissible if the similarity can be demonstrated sufficiently by justification and validation;
(iii) Calculation or reasoned argument, when the calculation procedures are generally agreed to be suitable and conservative. Assumptions should be clearly stated and fully justified, including by physical testing if applicable.

Additional recommendations are provided in paras 701.1-701.25 of SSG-26 (Rev. 1) [2]. No regulatory testing is required for Type IP-1 packages.

The methods or the standards used in each analysis that is specified in items 2.1 to 2.5 of the PDSR should include a description of the analysis technique used, the limitations and accuracy of this technique and the demonstration of the correct application of the technique for the analysis of the package design.
If computer codes are used for the safety analysis, then additional information should be included in the PDSR to justify that the code is verified and validated for the specific field of use.

(d) The performance characteristics of the package design should be assessed. More than one sequence of tests might need to be considered to ensure that the various safety functions to be fulfilled by different components of the package design comply with the regulatory requirements. Other hazards (e.g. corrosion, combustion, pyrophoricity or other chemical reactions, radiolysis, phase changes) should be analysed, as necessary, if they have a consequential effect on the safety functions of the package.

(e) The results of the technical analyses should be compared with the acceptance criteria and package design assumptions and regulatory compliance should be justified accordingly.

II.7 The following items listed in Figure 1 and para. 2.4 of this Safety Guide, are not relevant to and not needed for industrial packages, and therefore not included in Table 2:

— Part 1
 - Package performance characteristics;
 - Package illustration.
— Part 2
 - Other analyses.

TABLE 2. PDSR FOR INDUSTRIAL PACKAGES

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS OF THE PDSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The contents of the PDSR, Part 1 and Part 2, should be listed here, including the revision number of each individual document included in the PDSR.</td>
</tr>
</tbody>
</table>

PART 1

1.1. ADMINISTRATIVE INFORMATION

The following administrative information should be provided:

(a) Colloquial name of the package, if applicable;
(b) Identification of the package designer (name, address, contact details);
(c) Type of industrial package (Type IP-1, Type IP-2 or Type IP-3);
(d) For package types IP-2 and IP-3, packaging and/or package design identification and restrictions in packaging serial number(s), if applicable;
(e) Modes of transport for which the package is designed and any operational restrictions associated with the mode of transport;
(f) Reference to applicable regulations for the specific package design, including the edition of the IAEA Transport Regulations to which the package design is referring.

1.2. SPECIFICATION OF THE CONTENTS

A detailed description of the permitted contents of the package design should be provided by stating, at a minimum, the following information, as applicable:
TABLE 2. PDSR FOR INDUSTRIAL PACKAGES

(a) The general nature of contents (e.g. fresh fuel, contaminated tools, waste);
(b) The physical and chemical state, geometric shape, arrangement, material specifications. For industrial packages, the limits of contents depend on the physical state of the radioactive content;
(c) The nuclides and/or nuclide composition, including daughter radionuclides;
(d) The type and characteristics of the radiation emitted by the contents of the package;
(e) Limitations on activity, mass and activity concentrations, and heterogeneities in the distribution of the nuclides. The contents should be classified appropriately in one of the categories of LSA or SCO, as appropriate, in accordance with paras 409 and 413 of the Transport Regulations. Limitations in specific activity (Bq/g) and surface contamination (Bq/cm²) may be required. Conveyance activity limits in accordance with table 6 of the Transport Regulations should also be taken into account to limit the activity of a single package, if applicable;
(f) The mass of fissile material, the nuclides and the enrichment of the contents (see also Appendix V, if necessary);
(g) Other dangerous properties of the contents. In accordance with para. 618 of the Transport Regulations, any other dangerous properties (subsidiary hazards) of the contents of the package are required to be taken into account in the package design to be in compliance with the relevant transport regulations for dangerous goods. Additional information can be found in Ref. [3], Chapter 3.3 Special Provision 172;
(h) Other limitations to the contents (e.g. moisture, presence of acid). Safety relevant limits for non-radioactive materials (e.g. materials subject to radiolysis) should be stated, for example limits in terms of material composition, density, form, location within package, restrictions of relative quantities of materials.
(i) The A_1/A_2 values of the radionuclide to be carried in the package. The A_1/A_2 values for radionuclides that are not listed in table 2 of the Transport Regulations are required to be determined in accordance with paras 403 – 407 of the Transport Regulations and may be subject to multilateral approval in accordance with para. 403 of the Transport Regulations.

1.3. SPECIFICATION OF THE PACKAGING

The packaging design should be defined to the extent necessary to demonstrate compliance with the Transport Regulations, including the following information, as applicable:

(a) Design drawings;
(b) The overall dimensions, the maximum mass of the package, when fully loaded, and the mass of the empty packaging;
(c) A list of all packaging components important to safety and their materials. For Type IP-2 and Type IP-3 packages the material specifications of the packaging components should also be included);
(d) The maximum normal operating pressure (particularly in case of air transport).

For Type IP-3 packages, the specification of the packaging should include a description of the following:

(e) The packaging body, lid (closure mechanism and tamper-indicating features), internal arrangements and components for lifting and tie-down;
(f) The packaging components required for shielding;
(g) The protection against corrosion;
TABLE 2. PDSR FOR INDUSTRIAL PACKAGES

(h) The protection against contamination;	
(i) The shock limiting components;	
(j) Testing specifications and controls before first use to transport radioactive material and acceptance tests to ensure compliance of the fabrication to the design.	

Note - For radioactive material having other dangerous properties, see 4.1.9.1.5 of Ref. [3]. The packing instruction or tank instruction as specified in Ref. [3] (or in the applicable regulations for the carriage of dangerous goods) appropriate to the other dangerous properties of the radioactive material should be complied with, with the exception of industrial packages containing 0.1 kg or more of uranium hexafluoride.

1.4. AGEING CONSIDERATIONS

Depending on the package design, the information relating to the ageing considerations expected in this section of the PDSR, can be provided by the package designer directly in the table mentioned in item 1.5. For packagings used once for a single transport and not intended for shipment after storage, this section of the PDSR should be left blank.

For all other packagings, this section of the PDSR should include the following information:

(a) The intended conditions of use of the package that might influence ageing;
(b) The potential ageing mechanisms that are relevant to the package design, taking into account the intended conditions of use of the package;
(c) Operational activities (including maintenance and inspection activities before shipment) to monitor and limit the ageing effects;
(d) Analysis of the influence of the ageing of packaging and contents on the design assumptions for demonstration of compliance with the regulations, including the technical analyses in Part 2 of the PDSR. In this analysis the specified intended use conditions, ageing mechanisms and operational measures should also be considered.

More recommendations are provided in paras 613A.1 to 613A.4 of SSG-26 (Rev. 1) [2].

1.5. COMPLIANCE WITH REGULATORY REQUIREMENTS

The PDSR should include a complete list of all paragraphs of the international regulations [1, 3] and other international or national regulations applicable to the respective package design.

Compliance of the package design with these regulations should be demonstrated in the PDSR. This could be done using a table or any other written format linking the appropriate items of the PDSR, where compliance is demonstrated, to the applicable paragraphs of the regulations.

The applicable paragraphs of the Transport Regulations for industrial packages are provided in a matrix in Annex I.

1.6. PACKAGE OPERATIONS

The minimum specifications for the following activities should be fully defined, as applicable:

(a) Assembling of the packaging components. This information should not be included for Type IP-1 packages. Type IP-3 packages are required to comply with para. 637 of the Transport Regulations;
(b) Loading and unloading of the package contents;
(c) Testing and controls before each shipment;
TABLE 2. PDSR FOR INDUSTRIAL PACKAGES

(d) Handling and tie down. Specifications on bolt torqueing, number of transport cycles (to be used in fatigue analysis) for each mode of transport should be included, if applicable;
(e) Any proposed supplementary equipment and operational controls to be applied during transport and, if applicable, during storage before transport, including those that might influence ageing mechanisms.

In addition to the radioactive properties, any other dangerous properties of the contents of the package are required to be taken into account (see para. 507 of the Transport Regulations).

If written procedures with a detailed description of these activities are available, then reference should be made to these procedures.

1.7. MAINTENANCE

The minimum specifications for the following activities should be fully defined, as applicable:
(a) Maintenance and inspection before each shipment;
(b) Maintenance and inspection at periodic intervals throughout the lifetime use of the packaging and/or package.

When developing the packaging and/or package specifications for maintenance to be included in this section of the PDSR, the following points should be taken into account:
— Ageing mechanisms during storage, when applicable.
— For single use packages, periodic maintenance does not need to be considered.
— If written procedures with details of the package maintenance activities are available, then reference to these procedures should be made.

1.8. GAP ANALYSIS PROGRAMME

For packages that are to be used for shipment after storage, the PDSR should include a gap analysis programme describing a systematic procedure for periodic evaluation of changes of regulations, changes in technical knowledge and changes of the state of the package design during storage (see also paras 613A.5, 809.3 and 809.4 of SSG-26 (Rev. 1) [2] and Ref. [7]).

1.9. MANAGEMENT SYSTEM

The PDSR should include the specification of the management system that is established and implemented by the package designer, as required in para. 306 of the Transport Regulations, to demonstrate compliance with the relevant provisions of the Transport Regulations.

The management system should be commensurate with the complexity of the package design and should include a reliable document control system.

More recommendations on the management system for transport are provided in TS-G-1.4 [6].

PART 2

2.1. STRUCTURAL ANALYSIS

The results of the assessment of the mechanical behaviour (including, as applicable, analysis of fatigue, brittle fracture and creep) for routine conditions of transport for all industrial packages and for normal conditions of transport for Type IP-2 and Type IP-3 packages should consider the following:
TABLE 2. PDSR FOR INDUSTRIAL PACKAGES

(a) The components of the containment system. This is required for Type IP-1 packages only when transported by air (see paras 619 to 621 of the Transport Regulations);
(b) The package components that provide radiation shielding. This is not required for Type IP-1 packages;
(c) Any other package components (e.g. shock absorbing components) whose performance may have a consequential effect upon (a) and (b) above. This is not applicable to Type IP-1 packages.
(d) The lifting attachments see paras 608 and 609 of the Transport Regulations.
(e) The packaging attachments used for restraining the package to its conveyance for routine conditions of transport.

If the package is to be transported by air (paras 619 to 621 of the Transport Regulations), the structural analysis of the containment system should take into account ambient temperatures and pressures that are likely to be encountered in routine conditions of transport as well as the specific temperature and pressure requirements for air transport. In addition, attention should be paid to ensure that any nuts, bolts and other retention devices keep their safety functions during routine conditions of transport even after repeated use. Further recommendations are provided in paras 621.2, 621.3 and 613.1 of SSG-26 (Rev. 1) [2].

When performing the structural analysis for industrial packages, the following points should be considered:

1. **General considerations:**
 (i) The mechanical properties of the materials considered in the safety demonstration should be representative of the range of mechanical properties of the package components considering the temperatures likely to be encountered during routine conditions of transport (see para. 616 of the Transport Regulations);
 (ii) The impacts on the package behaviour due to variations in the shock absorbing properties of the shock absorber material (e.g. wood, polymers, plaster, concrete) with temperatures likely to be encountered during routine conditions of transport should be analysed;
 (iii) The safety against brittle fracture at temperatures likely to be encountered during routine conditions of transport of components of the containment system made of potentially brittle materials (e.g. ferritic steels, cast iron) should be analysed, if necessary;
 (iv) The strength of lid bolts should be verified for all drop orientations;
 (v) The internal components (e.g. content, basket, cage) should be verified to ensure that they are not liable to damage the containment system;
 (vi) The condition of the containment system should be determined to demonstrate compliance with the requirements of item 2.2 of the PDSR for the temperature range likely to be encountered during routine conditions of transport;
 (vii) Phenomena such as radiolysis, internal pressure elevation, internal inflammation or explosion, physical changes and chemical reactions should be considered when analysing the maximum pressure.

2. **Considerations for experimental mechanical testing:**
 (i) The package orientations should be determined in accordance with para. 722.4 of SSG-26 (Rev. 1)[2], which maximize loading of the package (such as stress, strain, acceleration and deformation) with consideration of the different package components (cask body, lid system, impact limiter, etc.) and of the protection objectives (containment and shielding) should be determined;
 (ii) For reduced scale models, geometry and material properties similar to the original design, or conservative geometry and material properties, should be used;
 (iii) The results of the drop test with reduced scale models should be tested to guarantee that they are covering and/or are transferable to the original design;
TABLE 2. PDSR FOR INDUSTRIAL PACKAGES

(iv) The representativeness of drop tests performed with reduced scale models should be demonstrated.

The experimental mechanical tests should be conducted and reported in accordance with the management system. The test report should address the verification of the package before testing, the description of the test site, the equipment used for the measurements and its calibration data and the results of the measurements performed. This report should also contain pictures showing and explaining the conditions under which the tests were performed and their results.

(3) Considerations for calculations:
 (i) See point (2)(i) above;
 (ii) Validated computer codes should be used. Input parameters (e.g. material laws, characteristic values, boundary conditions) should describe sufficiently and precisely the real technical and/or physical problems and the use of these parameters should be justified;
 (iii) If uncertainties exist regarding important input parameters (e.g. material laws), conservative design calculations including the possible range of material properties should be performed;
 (iv) Data used (e.g. material laws, boundary conditions, load assumptions) and calculation results should be documented comprehensively.

2.2. THERMAL ANALYSIS

The range of temperatures to be considered for the components of the package for demonstration of compliance is the range of temperatures likely to be encountered in routine conditions of transport for Type IP-1 and Type IP-2 packages. For Type IP-3 packages, the range of temperatures to be considered is specified in para. 639 of the Transport Regulations.

2.3. CONTAINMENT DESIGN ANALYSIS

The analysis of the containment design should demonstrate compliance with the requirements for preventing the loss or dispersal of radioactive material for routine conditions of transport for all industrial packages and with the requirements for normal conditions of transport for Type IP-2 and Type IP-3 packages.

Containment design analysis is not needed if the structural analysis has shown the integrity of the containment boundary, as applicable, for the conditions described in para. 645 of the Transport Regulations for reduction of ambient pressure and para. 621 of the Transport Regulations for increase of pressure differential.

2.4. DOSE RATE ANALYSIS

For performing the dose rate analysis, the following points should be considered:

— The dose rates for routine conditions of transport for all types of industrial package and the dose rate increase ratio for normal conditions of transport for Type IP-2 and Type IP-3 packages should be assessed to demonstrate compliance with the requirements of the Transport Regulations.
— The dose rate analysis should be based on assuming the maximum radioactive content of the package or such a content for an industrial package that would create the maximum dose rate at the surface of the package and at specific distances from the surface of the package as defined in the Transport Regulations.
— The dose rate analysis should take into account the most recent ICRP recommendations on nuclear decay data for dosimetric calculations (e.g. see Ref. [9]).
TABLE 2. PDSR FOR INDUSTRIAL PACKAGES

<table>
<thead>
<tr>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>In accordance with para. 624.4 and 523.6 of SSG-26 (Rev. 1) [2], the maximum dose rate and the</td>
</tr>
<tr>
<td>dose rate increase ratio for normal conditions of transport should be determined, taking into</td>
</tr>
<tr>
<td>account potential amplifying phenomena such as internal movement of the contents (for instance,</td>
</tr>
<tr>
<td>due to deficiencies of the retention system inside the package in case of transport of contaminated</td>
</tr>
<tr>
<td>tools), or, in the case of packages containing liquids, change in the state of the contents, including</td>
</tr>
<tr>
<td>segregation and precipitation of the radionuclides.</td>
</tr>
<tr>
<td>The following remarks should be taken into account when analysing the points listed above:</td>
</tr>
<tr>
<td>Dose rate analysis should be based on the maximum radioactive contents of the package design,</td>
</tr>
<tr>
<td>which should be defined by various methods and parameters, such as nuclide specific activities</td>
</tr>
<tr>
<td>and source terms for gamma and neutron emitters.</td>
</tr>
<tr>
<td>The dose rate limits can be shown to be met by calculations or measurements. If calculation</td>
</tr>
<tr>
<td>methods are used, the calculations of source terms should take into account the interactions,</td>
</tr>
<tr>
<td>secondary emissions and neutron multiplication factors when relevant. If dose rate measurements</td>
</tr>
<tr>
<td>are used, the source used for the measurements should be representative of the radioactive</td>
</tr>
<tr>
<td>contents specified in the package design.</td>
</tr>
<tr>
<td>All calculational methods used for dose rate analysis should be verified and validated for the</td>
</tr>
<tr>
<td>specific conditions of the package design they are applied to.</td>
</tr>
</tbody>
</table>

2.5. CRITICALITY SAFETY ANALYSIS

See Appendix V.
APPENDIX III - TYPE A PACKAGES

APPENDIX III.
TYPE A PACKAGES

III.1 This appendix provides specific recommendations on the information that should be included in Parts 1 and 2 of the PDSR for Type A packages. Further recommendations on Type A packages are provided in SSG-26 (Rev. 1) [2].

III.2 For packages containing fissile nuclides, in addition to the recommendations of this appendix, see also Appendix V.

III.3 For packages containing 0.1 kg or more of uranium hexafluoride, in addition to the recommendations of this appendix, see also Appendix VI.

III.4 For technical analyses, compliance of the package with the Transport Regulations should be demonstrated by the package designer either directly in item 1.5. of the PDSR or, if necessary, in Part 2 of the PDSR.

III.5 For each of the technical analyses in Part 2 of the PDSR, the following considerations apply:

a) The package design that is being evaluated should be uniquely identified by precisely indicating a drawing of the packaging (see item 1.3. of the PDSR), including its revision number, and the specification of contents (see item 1.2. of the PDSR), including its revision number.

b) The acceptance criteria for the technical analyses and the package design assumptions relating to geometry or performance characteristics should be defined and justified when necessary. The acceptance criteria should be specified by the designer derived from the criteria established by the regulatory body and from other applicable standards developed to meet the regulatory requirements. The design assumptions refer to the design specification provided in items 1.2. and 1.3. of the PDSR or to other assumptions derived from the design specifications and used in the technical analyses. All mechanical, thermal and shielding characteristics of each component of the package and acceptance criteria used in technical analyses should be defined.

c) The safety demonstration of a Type A package design is required to be accomplished in accordance with para. 701 of the Transport Regulations by any of the following methods or by a combination thereof:

(i) The results of physical testing of prototypes or models of appropriate scale;

(ii) Reference to previous satisfactory demonstrations of a sufficiently similar nature. Test results of designs similar to the design under consideration are permissible if the similarity can be demonstrated sufficiently by justification and validation;

(iii) Calculation or reasoned argument, when the calculation procedures are generally agreed to be suitable and conservative. Assumptions should be clearly stated and fully justified, including by physical testing if applicable.

Additional recommendations are provided in paras 701.1-701.25 of SSG-26 (Rev. 1) [2].

The methods or the standards used in each analysis specified in items 2.1 to 2.5 of the PDSR should include a description of the analysis technique used, the limitations and accuracy of this technique and the demonstration of the correct application of the technique for the analysis of the package design.

If computer codes are used for the safety analysis, then additional information should be included in the PDSR to justify that the code is verified and validated for the specified field of use.
d) The performance characteristics of the package design should be assessed. More than one sequence of tests might need to be considered to ensure that the various safety functions, to be fulfilled by different components of the package design, comply with the regulatory requirements. Other hazards that may have a consequential effect on the safety functions should be analysed. This may concern corrosion, combustion, pyrophoricity or other chemical reactions, radiolysis, phase changes.

e) The results of the technical analyses should be compared with the acceptance criteria and package design assumptions and regulatory compliance should be justified accordingly.

III.6 The following items listed in Figure 1 and para. 2.4 of this Safety Guide are not relevant to and not needed for Type A packages:

— Part 1:
 − Package performance characteristics.
— Part 2:
 − Other analyses.

TABLE 3. PDSR FOR TYPE A PACKAGES

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS OF THE PDSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The contents of the PDSR, Part 1 and Part 2, should be listed here, including the revision number of each individual document included in the PDSR.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. ADMINISTRATIVE INFORMATION</td>
</tr>
<tr>
<td>The following administrative information should be provided:</td>
</tr>
<tr>
<td>(a) Colloquial name of the package, if applicable;</td>
</tr>
<tr>
<td>(b) Identification of the package designer (name, address, contact details);</td>
</tr>
<tr>
<td>(c) Type of package;</td>
</tr>
<tr>
<td>(d) Packaging and/or package design identification and restrictions in packaging serial number(s), if applicable;</td>
</tr>
<tr>
<td>(e) Modes of transport for which the package is designed and any operational restrictions associated with the mode of transport;</td>
</tr>
<tr>
<td>(f) Reference to the applicable regulations for the specific package design, including the edition of the IAEA Transport Regulations for the Safe Transport of Radioactive Material to which the package design is referring.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.2. SPECIFICATION OF THE CONTENTS</th>
</tr>
</thead>
</table>
A detailed description of the permitted contents of the package design should be provided by stating, at a minimum, the following information, as applicable:

(a) The general nature of contents (e.g. irradiated fuel, metallurgical specimens, radiographic source);
(b) The nuclides and/or nuclide composition, including daughter radionuclides;
(c) The A_1/A_2 values of the radionuclide to be carried in the package. The A_1/A_2 values for radionuclides that are not listed in table 2 of the Transport Regulations are required to be determined in accordance with paras 403 – 407 of the Transport Regulations and may be subject to multilateral approval in accordance with para. 403 of the Transport Regulations.
(d) The physical and chemical state (additional design specifications are applicable to liquid and gas contents), geometric shape, arrangement, irradiation parameters, material specifications;
(e) The type and characteristics of the radiation emitted by the contents of the package;
(f) Limitations on activity, mass and activity concentrations, and heterogeneities in the distribution of the nuclides. Compliance with the activity limits for Type A packages in accordance with paras 429 – 430 of the Transport Regulations is required;
(g) A valid certificate for special form radioactive material or low dispersible radioactive material, when such material is included in the package;
(h) The mass of fissile material, the nuclides and the enrichment of the contents (see also Appendix V);
(i) Other dangerous properties of the contents. In accordance with para. 618 of the Transport Regulations, any other dangerous properties (subsidiary hazards) of the contents of the package are required to be taken into account in the package design to be in compliance with the relevant transport regulations for dangerous goods. Additional information on design requirements for dangerous goods in accordance with the subsidiary hazard can be found in Ref. [3], Chapter 3.3 Special Provision 172;
(j) Other limitations to the contents (e.g. moisture, presence of acid). Safety relevant limits for non-radioactive materials should be stated, for example limits in terms of material composition, density, form, location materials within package, restrictions of relative quantities of materials.

1.3. SPECIFICATION OF THE PACKAGING

The packaging design should be defined to the extent necessary to demonstrate compliance with the Transport Regulations, including the following information, as applicable:

(a) Design drawings;
(b) The overall dimensions, the maximum mass of the package, when fully loaded, and the mass of the empty packaging;
(c) A list of all packaging components important to safety and their materials, including the specifications of the components;
(d) The maximum normal operating pressure (particularly in case of air transport).

The packaging design should include a description of the following:

(e) The packaging body, lid (closure mechanism and tamper-indicating features), internal arrangements and components for lifting and tie-down;
(f) The packaging components of the containment system, including the definition of the containment boundary and the special features for liquid (see para. 650 of the Transport Regulations). This may be supported by special form radioactive material, if applicable (see also item 1.2 (g) of the PDSR);
(g) The packaging components required for shielding;
(h) The protection against corrosion;
(i) The protection against contamination;
(j) The shock limiting components;
(k) Testing specifications and controls before first use to transport radioactive material and acceptance tests to ensure compliance of the fabrication to the design. In accordance with para. 501 (a) of the Transport Regulations, if the design pressure of the containment system exceeds 35 kPa, a procedure for testing the integrity of the containment system under that pressure should also be included.

Note - For radioactive material having other dangerous properties, see 4.1.9.1.5 of Ref. [3]. With the exception of packages containing 0.1 kg or more of uranium hexafluoride, the packing instruction as specified in Ref. [3] (or in the applicable regulations for the carriage of dangerous goods) appropriate to the other dangerous properties of the radioactive material should be complied with.

1.4. AGEING CONSIDERATIONS

Depending on the package design, the information relating to the ageing considerations, expected in this section of the PDSR, can be provided by the package designer directly in the table mentioned in item 1.5. For packagings used once for a single transport and not intended for shipment after storage, this section should be left blank.

For all other packagings, this section of the PDSR should include the following information:

(a) The intended conditions of use of the package that might influence ageing;
(b) The potential ageing mechanisms that are relevant to the package design, taking into account the intended conditions of use of the package;
(c) Operational measures (including maintenance and inspection activities before shipment) to monitor and limit the ageing effects;
(d) Analysis of the influence of the ageing of packaging and contents on the design assumptions for demonstration of compliance with the regulations including the technical analyses in Part 2 of the PDSR. In this analysis the specified intended use conditions, ageing mechanisms and operational measures should also be considered.

Further recommendations are provided in paras 613A.1 to 613A.4 of SSG-26 (Rev. 1) [2].

1.5. COMPLIANCE WITH REGULATORY REQUIREMENTS

The PDSR should include a complete list of all paragraphs of the Transport Regulations and other international or national regulations applicable to the respective package design.

Compliance of the package design with these regulations should be demonstrated in the PDSR. This could be done using a table or any other written format linking the appropriate items of the PDSR, where compliance is demonstrated, to the applicable paragraphs of the regulations.

The applicable paragraphs of the Transport Regulations for Type A packages are provided in a matrix in Annex I.

1.6. PACKAGE OPERATIONS

The minimum specifications for the following activities should be fully defined, as applicable:

(a) Testing and controls before each shipment. The methods used for operational controls and tests, in particular those required in accordance with paras 502, 503 (a), 508, 523, 526, 527 and 528 of the Transport Regulations, should be detailed;
(b) Handling and tie down. Specifications on bolt torqueing, number of transport cycles (to be used in fatigue analysis) for each mode of transport should be included, if applicable;
(c) Loading and unloading of the package contents;
(d) Assembling of the packaging components, including demonstration of compliance with para. 637 of the Transport Regulations;
(e) Any proposed supplementary equipment and operational controls to be applied during transport.

In addition to the radioactive properties, any other dangerous properties of the contents of the package are required to be taken into account (see para. 507 of the Transport Regulations).

If written procedures with a detailed description of these activities are available, then reference should be made to these procedures.

1.7. MAINTENANCE

The minimum specifications for the following activities should be fully defined, as applicable:
(a) Maintenance and inspection before each shipment;
(b) Maintenance and inspection at periodic intervals throughout the lifetime use of the packaging and/or package.

When developing the maintenance specifications to be included in this section of the PDSR, the following points should be taken into account:
— Ageing mechanisms during storage, when applicable.
— For single use packages, periodic maintenance does not need to be considered.
— If written procedures with details of the package maintenance are available, then reference should be made to these procedures.

1.8. GAP ANALYSIS PROGRAMME

For packages that are to be used for shipment after storage, the PDSR should include a gap analysis programme describing a systematic procedure for periodic evaluation of changes of regulations, changes in technical knowledge and changes of the state of the package design during storage (see also paras 613A.5, 809.3 and 809.4 of SSG-26 (Rev. 1) [2] and Ref. [7]).

1.9. MANAGEMENT SYSTEM

The PDSR should include the specification of the management system that is established and implemented by the package designer as required in para. 306 of the Transport Regulations to demonstrate compliance with the relevant provisions of the Transport Regulations.

The management system should be commensurate with the complexity of the package design and should include a reliable document control system.

More recommendations on the management system for transport are provided in TS-G-1.4 [6].

1.10. PACKAGE ILLUSTRATION

A reproducible illustration should be provided showing the make-up of the package, including shock absorbers and packaging inserts, if applicable.

The illustration should indicate at least the overall outside dimensions and the mass of the package when empty and when loaded.
APPENDIX III - TYPE A PACKAGES

Part 2

2.1. STRUCTURAL ANALYSIS

The results of the assessment of the mechanical behaviour (including, as applicable, analysis of fatigue, brittle fracture and creep) for routine and normal conditions of transport should consider the following:

(a) The components of the containment system. This may include special form radioactive material, if applicable, as established in para. 642 of the Transport Regulations;
(b) The package components that provide radiation shielding;
(c) Any other package components (e.g. shock absorbing components) whose performance may have a consequential effect upon (a) and (b) above.
(d) The lifting attachments see paras 608 and 609 of the Transport Regulations;
(e) The packaging attachments used for restraining the package to its conveyance for routine conditions of transport.

If the package is to be transported by air (paras 619 to 621 of the Transport Regulations), the structural analysis of the containment system should take into account ambient temperatures and pressures that are likely to be encountered in routine conditions of transport as well as the specific temperature and pressure requirements for air transport. In addition, attention should be paid to ensure that any nuts, bolts and other retention devices keep their safety functions during routine conditions of transport even after repeated use. Further recommendations are provided in paras 613.1, 621.2 and 621.3 of SSG-26 (Rev. 1) [2].

When performing the structural analysis for Type A packages, the following points should be taken into account:

(1) General considerations:
 1) The mechanical properties of the materials considered in the safety demonstration should be representative for the range of mechanical properties of the package components and for temperatures likely to be encountered during routine conditions of transport (see para. 616 of the Transport Regulations);
 (i) The impacts on the package behaviour due to variations in the shock absorbing properties of the shock absorber material (e.g. wood, polymers, plaster, concrete) with temperatures likely to be encountered during routine conditions of transport should be analysed;
 (ii) The safety against brittle fracture at temperatures likely to be encountered during routine conditions of transport of components of the containment system made of potentially brittle materials (e.g. ferritic steels, cast iron) should be analysed if necessary;
 (iii) The strength of lid bolts should be verified for all drop orientations;
 (iv) The internal components (e.g. content, basket, cage) should be verified to ensure that they are not liable to damage the containment system;
 (v) The condition of the containment system should be determined to demonstrate compliance with the specifications in item 1.3. of the PDSR for the temperature range likely to be encountered during routine conditions of transport;
 (vi) Phenomena such as radiolysis, internal pressure elevation, internal inflammation or explosion, physical changes and chemical reactions should be considered when analysing the maximum pressure.

(2) Considerations for experimental mechanical testing:
 (i) The package orientations should be determined in accordance with para. 722.4 of SSG-26 (Rev. 1) [2]. The orientations should be such that maximize the loading of the package (in terms of stress, strain, acceleration and deformation) with consideration of the different
package components (e.g. cask body, lid system, impact limiter) and of the protection objectives (containment and shielding);

(ii) For reduced scale models, geometry and material properties similar to the original design, or conservative geometry and material properties, should be used;

(iii) The results of the drop test with reduced scale models should be tested to guarantee that they are covering and/or are transferable to the original design;

(iv) The representativeness of drop tests performed with reduced scale models should be demonstrated.

(v) The experimental mechanical tests should be conducted and reported in accordance with the management system. The test report should address the verification of the package before testing, the description of the test site, the equipment used for measurements and its calibration data and the results of the measurements performed. This report should also contain pictures showing and explaining the performing conditions of the tests and their results.

(3) Considerations for calculations:

(i) See point 2(i) above;

(ii) Validated computer codes should be used. Input parameters (e.g. material laws, characteristic values, boundary conditions) should describe sufficiently and precisely the real technical and/or physical problems and the use of these parameters should be justified;

(iii) If uncertainties exist regarding important input parameters (e.g. material laws), conservative design calculations including the possible range of material properties should be performed;

(iv) Data used (e.g. material laws, boundary conditions, load assumptions) and calculation results are to be documented comprehensively.

2.2. THERMAL ANALYSIS

The range of temperatures to be considered for the components of the package for demonstration of compliance is the range of temperatures specified in para. 639 of the Transport Regulations.

2.3. CONTAINMENT DESIGN ANALYSIS

The analysis of the containment design should demonstrate compliance with the requirements for preventing the loss or dispersal of radioactive material for routine and normal conditions of transport for all Type A packages. For Type A packages containing liquids or gases, additional drop tests are required according to the requirements established in paras 650 and 651 of the Transport Regulations.

Attention should be paid to define precisely the contents of the package, because assumptions and demonstrations for the containment design analysis can vary based on the contents.

Where special form radioactive material constitutes part of the containment system, consideration should be given to the appropriate performance of the special form radioactive material for routine and normal conditions of transport.

Containment analysis is not needed if the structural analysis has shown the integrity of the containment boundary, as applicable, according to the requirements established in para. 645 of the Transport Regulations for reduction of ambient pressure and para. 621 of the Transport Regulations for increase of pressure differential.

2.4. DOSE RATE ANALYSIS

For performing the dose rate analysis, the following points should be considered:
The dose rates for routine conditions of transport and the dose rate increase ratio for normal conditions of transport should be assessed to demonstrate compliance with the requirements of the Transport Regulations.

The dose rate analysis should be based on assuming the maximum radioactive content of the package or such a content for a type A package that would create the maximum dose rate at the surface of the package and at specific distances from the surface of the package as defined in the Transport Regulations.

The dose rate analysis should take into account the most recent ICRP recommendations on nuclear decay data for dosimetric calculations (e.g. see Ref [9]).

In accordance with para. 624.4 of SSG-26 (Rev. 1) [2], the maximum dose rate and the dose rate increase ratio for normal conditions of transport should be determined, taking into account potential amplifying phenomena, such as internal movement of the contents (for instance, due to deficiencies of the retention system inside the package in case of transport of contaminated tools), or, in the case of packages containing liquids, change in the state of the contents, including segregation and precipitation of the radionuclides.

The following remarks should be taken into account when analysing the points listed above:

Dose rate analysis should be based on the maximum radioactive contents of the package design, which should be defined by various methods and parameters, such as nuclide specific activities and source terms for gamma and neutron emitters;

The dose rate limits can be shown to be met by calculations or measurements. If calculation methods are used, the calculations of the source terms should take into account the interactions, secondary emissions and neutron multiplication factors when relevant. If dose rate measurements are used in the analysis, the source used for the measurements should be representative of the radioactive contents specified in the package design;

Dose rate analysis should be performed in such a way that the package surface areas with the maximum dose rates are identified and analysed. These package surface areas include trunnion areas, areas containing gaps that allow the radiation to pass without being attenuated and areas with the potential of increased dose rates due to the design of the package;

All calculation methods used for dose rate analysis should be verified and validated for the specific conditions of the package design they are applied to;

The expected areas for peak dose rates should be specified and checked before shipment;

Proof that the sources are maintained secure for drop test sequence conditions in their storage positions (e.g. in an irradiator) should be provided in the structural analysis, if applicable.

2.5. CRITICALITY SAFETY ANALYSIS

See Appendix V.
APPENDIX IV - TYPE B(U), TYPE B(M) AND TYPE C PACKAGES

APPENDIX IV.
TYPE B(U), TYPE B(M) AND TYPE C PACKAGES

IV.1 This appendix provides specific recommendations on the information that should be included in Parts 1 and 2 of the PDSR for Type B(U), Type B(M) and Type C packages. Further recommendations are provided in SSG-26 (Rev. 1) [2].

IV.2 For packages containing fissile nuclides, in addition to the recommendations of this appendix, see also Appendix V.

IV.3 For packages containing 0.1 kg or more of uranium hexafluoride, in addition to the recommendations of this appendix, see also Appendix VI.

IV.4 For technical analyses, compliance of the package with the Transport Regulations should be demonstrated by the package designer either directly in item 1.6. of the PDSR or, if necessary, in Part 2 of the PDSR.

IV.5 For each of the technical analyses in Part 2 of the PDSR, the following considerations apply:

a) The package design that is being evaluated should be uniquely identified by precisely indicating a drawing of the packaging (see item 1.3. of the PDSR), including its revision number, and the specification of the contents (see item 1.2. of the PDSR), including its revision number.

b) The acceptance criteria for the technical analyses and the package design assumptions relating to geometry or performance characteristics should be defined and justified when necessary. The acceptance criteria should be specified by the designer derived from the criteria established by the regulatory body and from other applicable standards developed to meet the regulatory requirements. The design assumptions refer the design specification provided in items 1.2. and 1.3. of the PDSR or to other assumptions derived from the design specifications and used in the technical analyses. The design assumptions should take into account ageing mechanisms, as necessary. Additional recommendations are provided in paras 613A.1 to 613A.4 of SSG-26 (Rev. 1) [2].

c) The safety demonstration of a package design is required to be accomplished in accordance with para. 701 of the Transport Regulations by any of the following methods or by a combination thereof:

 (i) The results of physical testing of prototypes or models of appropriate scale;

 When a programme for physical testing of prototypes or models of appropriate scale is implemented for a specific package design to be approved by the competent authority, the competent authority should be notified of the programme before the testing and should be allowed to witness the testing. When such a programme of tests is done without competent authority approval, but is part of the safety analysis, its validity is to be determined by the competent authority.

 (ii) Reference to previous satisfactory demonstrations of a sufficiently similar nature.

 Test results of designs similar to the design under consideration are permissible if the similarity can be demonstrated sufficiently by justification and validation;

 (iii) Calculation or reasoned argument, when the calculation procedures are generally agreed to be suitable and conservative. Assumptions should be clearly stated and fully justified, including by physical testing if applicable.
APPENDIX IV - TYPE B(U), TYPE B(M) AND TYPE C PACKAGES

Additional recommendations are provided in paras 701.1-701.25 of SSG-26 (Rev. 1) [2]. The methods or the standards used in each analysis specified in items 2.1 to 2.6 of the PDSR should include a description of the analysis technique used, the limitations and accuracy of this technique and the demonstration of the correct application of the technique for the analysis of the package design.

If computer codes are used for the safety analysis, then additional information should be included in the PDSR to justify that the code is verified and validated in its field of use.

d) The performance characteristics of the package design should be assessed. More than one sequence of tests might need to be considered to ensure that the various safety functions to be fulfilled by different components of the package design comply with the regulatory requirements. Other hazards should be analysed, if they have a consequential effect on the safety functions of the package. This may concern corrosion, combustion, pyrophoricity or other chemical reactions, radiolysis, phase changes.

e) The results of the technical analyses should be compared with the acceptance criteria and package design assumptions and regulatory compliance should be justified accordingly.

TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

<table>
<thead>
<tr>
<th>TABLE OF CONTENTS OF THE PDSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>The contents of the PDSR, Part 1 and Part 2, should be listed here, including the revision number of each individual document included in the PDSR.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. ADMINISTRATIVE INFORMATION</td>
</tr>
<tr>
<td>The following administrative information should be provided:</td>
</tr>
<tr>
<td>(a) Colloquial name of the package, if applicable;</td>
</tr>
<tr>
<td>(b) Identification of the package designer (name, address, contact details);</td>
</tr>
<tr>
<td>(c) Type of package;</td>
</tr>
<tr>
<td>(d) Packaging and/or package design identification and restrictions in packaging serial number(s), if applicable;</td>
</tr>
<tr>
<td>(e) Modes of transport for which the package is designed, and any operational restrictions associated with the mode of transport;</td>
</tr>
<tr>
<td>(f) Reference to the applicable regulations for the specific package design, including, if necessary, the edition of the IAEA Transport Regulations for the Safe Transport of Radioactive Material to which the package design is referring.</td>
</tr>
</tbody>
</table>

| 1.2. SPECIFICATION OF THE CONTENTS |
| The description of the contents and of their physical and chemical forms and radionuclides should be sufficiently precise to allow the demonstration of compliance with the requirements for containment of the radioactive contents, control of the external dose rate and protection of damage caused by heat. |
APPENDIX IV - TYPE B(U), TYPE B(M) AND TYPE C PACKAGES

TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

| The description should include all dimensions (drawings), material characteristics and mechanical properties which are used in demonstrating the required safety performances. |
| The properties of materials should be given for temperatures ranging from -40°C (or another specified temperature for Type B(M) packages) to the maximum temperature in normal conditions of transport. The properties of materials of components that are expected to maintain their safety function under the thermal test, should be given for a range of temperature reachable during such a test. |
| The description may include the total numbers of A₁ or A₂ in the contents. |
| There are additional design requirements depending on the activity (e.g. see para. 660 of the Transport Regulations). |
| Compliance with the activity limits for Type B(U) and Type B(M) packages, if transported by air, in accordance with para. 433 of the Transport Regulations should be considered. |
| A detailed description of the permitted contents of the package design should be provided by stating, at a minimum, the following information, as applicable: |
| (a) The general nature of contents (e.g. irradiated fuel, metallurgical specimens, radiographic source); |
| (b) The nuclides and/or nuclide composition, including daughter radionuclides; |
| (c) The physical and chemical state, geometric shape, arrangement, irradiation parameters (if applicable, the maximum burnup and minimum cooling time), moisture content, material specifications; |
| (d) The type and characteristics of the radiation emitted by the contents of the package |
| (e) The limitations in activity, mass and concentrations, heterogeneities in the distribution of the nuclides; |
| (f) A valid certificate for special form radioactive material or low dispersible radioactive material, when such materials are included in the package; |
| (g) Limitations in the heat generation rate of the contents; |
| (h) The mass of fissile material, the nuclides and the enrichment of the contents (see also Appendix V, if necessary); |
| (i) Other dangerous properties (subsidary hazards) of the contents. In accordance with para. 618 of the Transport Regulations, any other dangerous properties of the contents of the package are required to be taken into account in the packing to be in compliance with the relevant transport regulations for dangerous goods. Additional information on the design requirements for dangerous goods in accordance with the subsidiary hazard can be found in Ref. [3], Chapter 3.3 Special Provision 172); |
| (j) Other limitations to the contents (e.g. moisture, presence of acid). Safety relevant limits for non-radioactive materials (e.g. materials subject to radiolysis) should be stated, for example limits in material composition, density, form, location within the package, restrictions of relative quantities of materials. |
| (k) The A₁/A₂ values of a radionuclide to be carried in the package. The A₁/A₂ values for radionuclides that are not listed in Table 2 of the Transport Regulations determined in accordance with paras 403 – 407 of the Transport Regulations and may be subject to multilateral approval in accordance with para. 403 of the Transport Regulations. |

1.3. SPECIFICATION OF THE PACKAGING
APPENDIX IV - TYPE B(U), TYPE B(M) AND TYPE C PACKAGES

TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

The packaging design should be defined to the extent necessary to demonstrate compliance with the Transport Regulations, including the following information, as applicable:

(a) Design drawings;
(b) The overall dimensions, the maximum mass of the package, when fully loaded and the mass of the empty package (additional configurations may be included, depending on the operation conditions);
(c) A list of packaging components important to safety and their materials, including the specifications and methods of manufacture of the components, specifications for material procurement, welding, other special processes, non-destructive evaluation and testing. The properties of materials of components that are expected to maintain their safety function under the thermal test, should be given for a range of temperature reachable during such a test;
(d) The maximum normal operating pressure.
(e) The packaging body, lid (closure mechanism and tamper-indicating features) and internal arrangements, and components for lifting and tie-down;
(f) The packaging components of the containment system (including the definition of the containment boundary). This may be supported by special form radioactive material, if applicable (see also item 1.2. (f) of the PDSR);
(g) The packaging components required for shielding;
(h) The packaging components for thermal protection;
(i) The packaging components for heat dissipation;
(j) The protection against corrosion;
(k) The protection against contamination;
(l) The shock absorbing components;
(m) Testing specifications and controls before first use to transport radioactive material. This ensures compliance of the fabrication to the design and allows acceptance of the specimen before its first use. See also para. 501 of the Transport Regulations.

1.4. AGEING CONSIDERATIONS

Depending on the package design, the information relating to the ageing considerations, expected in this section of the PDSR, can also be provided by the package designer directly in the table mentioned in item 1.6.

For packagings used once for a single transport and not intended for shipment after storage, this section should be left blank.

For all other packagings, this section of the PDSR should include the following information:

(a) The intended conditions of use of the package that might influence ageing;
(b) The potential ageing mechanisms that are relevant to the package design, taking into account the intended conditions of use of the package;
(c) Operational measures (including maintenance and inspection activities before shipment) to monitor and limit the ageing effects;
(d) Analysis of the influence of the ageing of packaging and contents on the design assumptions for demonstration of compliance with the regulations, including the technical analyses in Part 2 of the PDSR, considering the specified intended use conditions, ageing mechanisms and operational measures.

More recommendations are provided in paras 613A.1 to 613A.4 of SSG-26 (Rev. 1) [2] and additional information on ageing considerations can be found in TECDOC-XYZT Methodology for a Safety Case for a Dual Purpose Cask for Storage and Transport of Spent Fuel [7].
TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

1.5. PACKAGE PERFORMANCE CHARACTERISTICS

This section should describe the main design principles and performance characteristics of the package design to meet the different safety requirements (e.g. containment, heat removal, dose rates) of the Transport Regulations.

This section should summarize the analyses performed in Part 2 of the PDSR and describe how analysis assumptions and data used for the safety analysis – especially regarding release of radioactive material and dose rates – are derived from the design and the behaviour of the package for routine, normal and accident conditions of transport, also taking into account ageing mechanisms (see item 1.4. of the PDSR).

This section will help to ensure that the package design and the various parts of the safety demonstration are compatible with one another.

1.6. COMPLIANCE WITH REGULATORY REQUIREMENTS

The PDSR should include a complete list of all paragraphs of the Transport Regulations and other international or national regulations applicable to the respective package design.

Compliance of the package design with these regulations should be demonstrated in the PDSR. This could be done using a table or any other written format linking the appropriate items of the PDSR, where compliance is demonstrated, to the applicable paragraphs of the regulations.

Annex I provides a matrix indicating the applicable paragraphs of the Transport Regulations for Type B(U), Type B(M) and Type C packages.

1.7. PACKAGE OPERATIONS

The minimum specifications for the following activities should be fully defined, as applicable:

(a) Testing and controls before each shipment:
 (i) The methods used for operational controls and tests. In particular those required in paras 502, 503, 508, 523, 526, 527 and 528 of the Transport Regulations, should be detailed;
 (ii) The measures aiming at preventing the presence of unauthorized objects (e.g. tools, small pieces of plastic, worn gaskets) in the package should be defined;
 (iii) The control of all void spaces of the package (cavity and other spaces), in particular regarding water penetration, should be specified;
 (iv) For drying operations, the method used should prevent formation of ice;
 (v) For leak tightness testing, qualified methods should be implemented (see item 1.3. of the PDSR). For packages that are or have been in contact with water, it should be demonstrated that the presence of water does not impair the validity of the leak tightness testing by sealing the leakage paths;
 (vi) The absence of defects should be ensured by a specific inspection procedure that has been appropriately qualified;
 (vii) The control of tightening torques of the bolts and of the correct position of the lid, and the adjustment of the internal atmosphere and pressure should be specified.

(b) Handling and tie down. Specifications on bolt torquing, number of transport cycles (to be used in fatigue analysis) for each mode of transport should be included, if applicable;

(c) Loading and unloading of the package contents;
1.8. MAINTENANCE

The minimum specifications for the following activities should be fully defined, as applicable:
(a) Maintenance and inspection before each shipment;
(b) Maintenance and inspection at periodic intervals throughout the lifetime use of the packaging and/or package;

Periodic maintenance and inspection activities should be detailed and may include the following activities and tests, depending on the package design:
(c) Visual inspections and measurements (including tie-down and handling attachments);
(d) The control of all void spaces of the package (cavity and other spaces), in particular regarding water penetration;
(e) Weld examinations;
(f) Structural and pressure tests (including tie-down and handling attachments);
(g) Leakage tests;
(h) Component and material tests (screws, bolts, welds, gaskets, seals, wood, foam, resin, etc.);
(i) Shielding tests;
(j) Thermal verification tests.

The definition of the periodicity of replacement of the packaging components should take into account any reduction in efficiency due to wear, corrosion, ageing and change in seal compression with time.

The justification of the periodicity of activities, when needed, should be included in this section.
If written procedures with details of the package maintenance activities are available, then reference should be made to these procedures.

1.9. GAP ANALYSIS PROGRAMME

For packages that are to be used for shipment after storage, the PDSR should include a gap analysis programme describing a systematic procedure for periodic evaluation of changes of regulations, changes in technical knowledge and changes of the state of the package design during storage (see also paras 613A.5, 809.3 and 809.4 of SSG-26 (Rev. 1) [2] and Ref. [7]).

1.10. MANAGEMENT SYSTEM
The PDSR should include the specification of the management system that is established and implemented by the package designer as required in para. 306 of the Transport Regulations to ensure compliance with the relevant provisions of the Transport Regulations.

The management system should cover the following activities:

(a) Package design, PDSR, documentation, records;
(b) Manufacture and testing of the packaging;
(c) Operation (loading, transport, storage in transit, receipt and unloading);
(d) Maintenance, repair and inspection of the packaging.

The management system should be commensurate with the complexity of the package design and should include a reliable document control system.

The management system should include descriptions of the actions to be performed to check the compliance with the PDSR of the documents relating to package operation (e.g. manufacture, operation or maintenance manual) and the management of deviations detected in the framework of any transport activity.

For all components important to safety, PDSR should define the parameters to be guaranteed to assure compliance with the package design, and thereby safety, and the level of controls during manufacturing and maintenance.

More recommendations on the management system for transport are provided in TS-G-1.4 [6].

1.11. PACKAGE ILLUSTRATION

A reproducible illustration should be provided showing the make-up of the package, including shock absorbers, devices for thermal protection and packaging inserts, if applicable.

The illustration should indicate at least the overall outside dimensions and the mass when empty and when loaded.

Part 2

2.1. STRUCTURAL ANALYSIS

The results of the assessment of the mechanical behaviour (including, as applicable, analysis of thermal stresses, fatigue, brittle fracture and creep) for routine, normal and accident conditions of transport should include the following:

(a) The components of the containment system. This may include special form radioactive material, if applicable, as established in para. 642 of the Transport Regulations;
(b) The package components that provide radiation shielding;
(c) Any other package components (e.g. shock absorbing components, packaging components that provide heat dissipation) whose performance may have a consequential effect upon (a) and (b);
(d) The lifting attachments see paras 608 and 609 of the Transport Regulations;
(e) The packaging attachments used for restraining the package to its conveyance for routine conditions of transport.

If the package is to be transported by air (paras 619 to 621 of the Transport Regulations), the structural analysis of the containment system should take into account ambient temperatures and pressures that are likely to be encountered in routine conditions of transport as well as the specific temperature and
When performing the structural analysis, the following points should be taken into account.

(1) **General remarks:**

(i) The mechanical properties of the materials considered in the safety demonstration should be representative of the range of mechanical properties of the package components, considering also the temperature ranges between -40°C (or another specified temperature for Type B(M) packages) and +70°C (see para. 639 of the Transport Regulations) and the temperature range of the respective package components in normal conditions of transport (see para. 653 of the Transport Regulations).

(ii) The impacts on the package behaviour due to variations in the shock absorbing properties of the shock absorber material (e.g. wood, polymers, plaster, concrete) should be analysed for the temperature range from -40°C (or another specified temperature for Type B(M) packages as agreed by the competent authority) to the maximum temperature in normal conditions of transport, and for a range of moisture conditions;

(iii) The safety against brittle fracture should be analysed at -40°C (or another specified temperature for Type B(M) packages) for those components of the containment system made of potentially brittle materials (e.g. ferritic steels, cast iron);

(iv) The strength of the lid bolts should be verified for all drop orientations;

(v) Any excursion in the plastic domain should be avoided to the extent possible for containment system components, such as bolts and gasket seats that would need additional complex proofs concerning the mechanics of the rupture or the maintenance of sufficient gasket seating;

(vi) Any possible damage of metallic seals after drops due to vibrations or sliding of the lid should be evaluated;

(vii) The internal components (e.g. content, basket, cage) should be verified to ensure that they are not liable to damage the containment system. For the evaluation of the impact of internal components to the packaging lid, the maximum possible gap between these components and the lid before the drop should be considered;

(viii) The condition of the containment system should be determined to demonstrate compliance with the specifications in item 1.3. of the PDSR for the temperature range concerned, i.e. from -40°C (or another specified temperature for Type B(M) packages as agreed by the competent authority) to the maximum temperature in accident conditions of transport;

(ix) Retention of sufficient thermal protection, after the mechanical tests for accident conditions of transport, to guarantee the containment or other components safety function during the thermal test should be demonstrated.

(x) The effect of the thermal test on the mechanical behaviour of the package should be assessed, taking into account, for example, thermal stresses and strains, thermo-mechanical interactions between package components and interactions of the package components with the contents;

(xi) If the shielding includes components made from lead, the consolidation height of lead (lead slump) after the 9 m drop test should be determined, taking into account environmental conditions described in paras 656 and 657 of the Transport Regulations;

(xii) Phenomena such as radiolysis (internal pressure elevation, internal inflammation or explosion), physical changes, chemical reactions, and accident conditions of transport (including the thermal test) should be considered when analysing the maximum pressure;

(xiii) An appropriate water immersion test depending on the content activity of the package should be considered.
TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

(2) **Considerations for experimental mechanical testing:**

(i) The package orientations should be determined in accordance with paras 722.4 and 727.5 of SSG-26 (Rev. 1) [2]. The orientations should be such that maximize the loading of the package (in terms of stress, strain, acceleration and deformation) with consideration of the different package components (e.g. cask body, lid system, impact limiter) and of the protection objectives (containment and shielding);

For package orientations, the following tests should be considered:

- Tests that maximize the stresses and acceleration (e.g. flat, slap down): the greater the impact area, the harder the impact, under the assumption of constant stiffness per unit area;
- Tests that maximize the deformation (e.g. on corner, on edges): the smaller the impact area, the greater the crushing;
- Tests that maximize the damage to orifices, notably by a puncture bar. The containment components in the orifices are often thin and more liable to be damaged by the bar than the body of the packaging;
- Tests that maximize the risk of perforation by a puncture bar, possibly oblique: if the impacted package surface is oblique with respect to the puncture bar, the initial impact takes place on an edge of the puncture bar and the risk of perforation is much higher.

(ii) For reduced scale models, geometry and material properties similar to the original design or conservative geometry and material properties should be used;

(iii) The results of the drop test with reduced scale models should be assessed to ensure that they are covering and/or are transferable to the original design;

(iv) The representativeness of drop tests performed with reduced scale models should be demonstrated for the following parameters and components:

- Drop heights: it might be necessary to increase the drop heights during testing to simulate the total potential energy that would have been received by the package at full scale. This should be considered for drop tests where the characteristic deformation of the structure is not negligible in comparison to the drop height;
- Appropriate geometry scaling of all components (e.g. lids, nuts and bolts, grooves for the seals);
- Metallic gaskets: same design, same material and homothetic transformation with regard to elastic restitution should be selected;
- O-rings: the selection should be based on the similarity of the useful elastic restitution taking into account the compression set. The change of material properties with the temperature conditions should be considered;
- The scaling of tightening torques for bolts of the reduced scale model should take into account the dispersion of friction conditions, precision of torques and technical limitations in an exact geometrical and physical scaling of the containment system components;
- Welding seams should be similar in the scale model and package design;
- In case of reduced scale model drop testing with significant deformations of impact limiters, the original package performance should be carefully justified.

The experimental mechanical tests should be conducted and reported in accordance with the management system. The test report should address the verification of the package before testing, the description of the test site, the equipment used for measurements and its calibration data and the results of the measurements performed. This report should also contain pictures showing and explaining the performing conditions of the tests and their results.
APPENDIX IV - TYPE B(U), TYPE B(M) AND TYPE C PACKAGES

TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

<table>
<thead>
<tr>
<th>Considerations for calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) See point 2(i) above;</td>
</tr>
<tr>
<td>(ii) Validated computer codes should be used. Input parameters (e.g. material laws, characteristic values, boundary conditions) should describe sufficiently and precisely the real technical and/or physical problems and the use of these parameters should be justified;</td>
</tr>
<tr>
<td>(iii) If uncertainties exist regarding important input parameters (e.g. material laws), conservative design calculations including the possible range of material properties should be performed;</td>
</tr>
<tr>
<td>(iv) Data used (e.g. material laws, boundary conditions, load assumptions) and calculation results are to be documented comprehensively.</td>
</tr>
</tbody>
</table>

2.2. THERMAL ANALYSIS

The temperature of the accessible surfaces of a package under the conditions defined in paras 654 or 655 of the Transport Regulations should be determined.

The temperature of the package components should be assessed in normal conditions of transport (see para. 653 of the Transport Regulations) and accident conditions of transport (see para. 659 (b) of the Transport Regulations). The thermal analysis should include the thermal behaviour of the following components:

- (a) The components of the containment system;
- (b) The components of radiation shielding;
- (c) The package components whose performance will have a consequential effect upon (a) and (b).

The following considerations should be taken into account for the thermal analysis:

- The effects of insolation on a period of 12 hours in accordance with para. 657 of the Transport Regulations. Averaging of the results of insolation on 24 hours should not be accepted;
- The solar insolation before and after the thermal test as defined in para. 728 of the Transport Regulations;
- The presence of protective systems liable to oppose heat dissipation in normal conditions of transport. Protective systems to be considered include, as applicable, tarpaulins, canopies, additional screens and outer packaging (e.g. containers, boxes);
- The justification for simplifying the assumptions (e.g. absence of trunnions) used for calculation under normal and accident conditions of transport;
- The analysis of the package in accident conditions of transport under the position (horizontal or vertical) less resistant to thermal tests;
- The value of the surface absorptivity coefficient of the package. The surface absorptivity coefficient should not be lower than 0.8 (see para. 728 (a) of the Transport Regulations) during and after the thermal test to account for deposits upon the package surface. The surface absorptivity coefficient should also not be lower than the possible maximum value of the emissivity coefficient in routine conditions of transport;
- The evaluation of the minimum and maximum temperatures of the various components of the packaging, taking account of all the possible positions for the radioactive contents;
- The profile of heat power based on the burnup distribution in irradiated fuels considered in the thermal analysis;
- The justification that the temperature measurements were performed at thermal equilibrium, when thermal analysis for the conditions specified in paras 654 and 655 of the Transport Regulations is based on test results;
TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

— The justification that the concentration of oxygen present in the furnace is controlled and in conformity with that obtained in a hydrocarbon fuel-air fire, when the thermal test is made in a furnace and when it is noted that some package components burn. In addition, control of heat input should be considered thoroughly;

— The influence of combustible materials that generate additional heat input and affect the fire duration beyond the thermal test;

— The safety margins on temperature results derived using numerical modelling commensurate with the uncertainty associated to the numerical model;

— Demonstration that the spare volume in the gasket grooves allows for gasket thermal expansion in the conditions specified in paras 654 and 655 of the Transport Regulations and accident conditions of transport, unless appropriate justification is provided.

2.3. CONTAINMENT DESIGN ANALYSIS

All the possible releases, in the form of gases, liquids, solids or aerosols, through leaks or by permeation should be included in the containment design analysis.

The technical assessment of the containment design should demonstrate compliance with the release criteria for normal and accident conditions of transport and the following points should be considered:

— The mechanical resistance of the irradiated fuel assemblies with respect to the internal pressure should have been assessed in item 2.1 of the PDSR. The risk of rupture due to creep of the rods under the effect of the internal pressure should be evaluated, taking into account the mechanical properties of the fuel cladding for the temperature conditions in normal conditions of transport and for the burnup of the irradiated fuel assemblies in combination with the free drop test;

— The analysis of the state of the irradiated fuel assemblies in accident conditions of transport (risk of cracking or rupture of the fuel rod at their ends) should have been included in item 2.1 of the PDSR for safety demonstration, if necessary;

— The fission gas release fraction out of fuel material should be justified;

— The presence of debris and of aerosols in the package cavity for irradiated fuels in the case of rupture due to the shearing of the rods should be considered;

— The formation of aerosols for contents consisting of materials in powder form should be considered for accident conditions of transport;

— The long-term behaviour of gasket material should be considered (see item. 1.7. of the PDSR);

— A reduction of ambient pressure to 60 kPa should be considered for evaluation of activity release.

2.4. DOSE RATE ANALYSIS

For performing the dose rate analysis, the following points should be considered:

— The dose rates for routine and accident conditions of transport and the dose rate increase ratio for normal conditions of transport should be assessed to demonstrate compliance with the requirements established in the Transport Regulations.

— The dose rate analysis should be based on assuming the maximum radioactive content of the package or such a content that would create the maximum dose rate at the surface of the package and at specific distances from the surface of the package as defined in the Transport Regulations. The dose rate analysis should take into account the most recent ICRP recommendations on nuclear decay data for dosimetric calculations (e.g. see Ref [9]).

— In accordance with para. 624.4 and 523.6 of SSG-26 (Rev. 1) [2], the maximum dose rate and the dose rate increase ratio for normal conditions of transport should be determined, taking into
TABLE 4. PDSR FOR TYPE B(U), B(M) AND C PACKAGES

account potential amplifying phenomena, such as internal movement of the contents, or, in the case of packages containing liquids, change in the state of the contents, including segregation and precipitation of the radionuclides.

The following remarks should be taken into account when analysing the points listed above:

— Dose rate analysis should be based on the maximum radioactive contents of the package design, which should be defined by various methods and parameters such as nuclide specific activities, source terms for gamma and neutron emitters and others as appropriate;

— The dose rate limits can be shown to be met by calculations or measurements. If calculation methods are used, the calculations of source terms should take into account the interactions, secondary emissions and neutron multiplication factors when relevant. If measurements are used, the radiation sources should be selected to be representative of the radioactive contents specified in the package design and appropriate dose rate measuring techniques should be used for gamma and neutron radiation, as applicable;

— Dose rate analysis should be performed in such a way that the package surface areas with the maximum dose rates are identified and analysed. These package surface areas include trunnion areas, areas containing gaps that allow the radiation to pass without being attenuated and other areas with the potential of increased dose rates due to the package design;

— All calculational methods used for dose rate analysis should be verified and validated for the specific conditions of the package design that they are applied to;

— The expected areas for peak dose rates should be specified and checked before shipment;

— Proof that the sources are maintained secure in their storage positions for drop test sequence conditions (e.g., in irradiators) should be provided in the structural analysis, if applicable;

— For the materials providing radiation shielding, local melting or combustion during the thermal test should be considered, as determined by the thermal analysis, and the thermal analysis should take into account the effects of penetration or deformation of components by the bar in the mechanical test.

2.5. CRITICALITY SAFETY ANALYSIS

See Appendix V.

2.6. OTHER ANALYSES

Radiolysis and thermolysis phenomena can affect and can be affected by the structural analysis, the thermal analysis, the containment design analysis and the dose rate analysis.

If the package contains wet contents, the internal pressure built up inside the package should be assessed and considered for regulatory transport conditions.

For the assessment of effects (e.g. internal pressure elevation, internal inflammation or explosion) concerning radiolysis and/or thermolysis on the performance characteristics of the package design the following points should be considered:

— If water or hydrocarbonated materials (e.g. cellulose, polymers, aqueous or organic solutions, absorbed humidity) are present in the package, the absence of the risk of accumulation of combustible gases exceeding the limiting concentration for inflammability should be demonstrated;
When the radiolysis phenomenon limits the maximum safe duration of transport, any specified limit for the duration of transport should necessarily integrate margins for incidents and emergency response operations;

— If leaking fuel rods are allowed as contents and absence of water has not been demonstrated, contained water should be taken into account.

If applicable, the risk of chemical or physical reactions for materials that react with water or oxygen (e.g. sodium, UF₆, plutonium and metallic uranium) should be assessed. Moreover, the potential change of phase (i.e. freezing, melting, boiling), precipitation or segregation should be considered.
APPENDIX V. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING FISSILE NUCLIDES

V.1. This appendix provides specific additional recommendations on the information to be provided in Parts 1 and 2 of the PDSR for packages containing fissile nuclides, as defined in para. 222 of the Transport Regulations.

V.2. The recommendations provided in this appendix apply in addition to those items belonging to the package type defined by the radioactive properties of the contents (see Appendices I to IV).

V.3. Further recommendations are also provided in SSG-26 (Rev. 1) [2] and further guidance can be found in IAEA-TECDOC-1768 [8].

V.4. For packages containing 0.1 kg or more of uranium hexafluoride, see in addition Appendix VI.

FIG. 2. Overview of the provisions for the transport of fissile material (adapted from Ref. [8]).

<table>
<thead>
<tr>
<th>Non-fissile or fissile-excepted UN Number</th>
<th>FISSILE UN Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>222</td>
<td>417(a) to (e)</td>
</tr>
<tr>
<td>417(f)</td>
<td>674 & 675</td>
</tr>
<tr>
<td>Others</td>
<td>Others</td>
</tr>
</tbody>
</table>

- Defines the fissile nuclides, and fissile material as material containing those nuclides
- Excludes certain materials from being defined as fissile

- Defines limits on the mass, form and isotopic composition of fissile nuclides that except the package or material from further criticality safety consideration

- Material specification required to ensure sub-criticality set out in a CA “FE” certificate (802(a)(iii))

- Defines limits on the mass and isotopic composition of fissile nuclides in a package and requirements on the package design that allows transport as a fissile package

- Package design specified in a CA fissile “F” certificate (802(a)(v)) (including Special Arrangements)

<table>
<thead>
<tr>
<th>Group No 1</th>
<th>Group No 2</th>
<th>Group No 3</th>
<th>Group No 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not defined as fissile material</td>
<td>Exception from UN FISSILE classification and control of accumulation of fissile material by control of the criticality safety index (CSI control)</td>
<td>CSI control with exception from CA approval of package design</td>
<td>CSI control with CA approval of package design</td>
</tr>
</tbody>
</table>
APPENDIX V - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING FISSILE NUCLIDES

The Transport Regulations comprise the following four groups of provisions for the transport of radioactive material containing fissile nuclides, also shown in the bottom row of Figure 2:

- Group No 1: Transport where the material is not classified as fissile, in accordance with the definition of fissile material;
- Group No 2: Transport with exception from UN “FISSILE” dangerous goods classification and criticality safety index (CSI) accumulation control;
- Group No 3: Transport with UN “FISSILE” dangerous goods classification and criticality safety index (CSI) accumulation control, but without competent authority approval as a package design for fissile material;
- Group No 4: Transport in a package for which the design is approved by the competent authority to contain fissile material.

V.5. The same package may be assigned to different groups for different consignments. This should be reflected in the PDSR. For each group, the complete information should be given in the PDSR, as specified in Table 5.

V.6. For Group No 1, no additional information is needed in the PDSR.

V.7. For technical analyses, compliance of the package with the Transport Regulations should be demonstrated by the package designer either directly in item 1.6. of the PDSR or, if necessary, in Part 2 of the PDSR.

V.8. For each of the technical analyses in Part 2 of the PDSR, the following considerations apply:

(a) The package design that is being evaluated should be uniquely identified by precisely indicating a drawing of the packaging (see item 1.3. of the PDSR), including its revision number, and the specification of contents (see item 1.2. of the PDSR), including its revision number.

(b) The acceptance criteria for the technical analyses and the package design assumptions relating to geometry or performance characteristics should be defined and justified when necessary. The acceptance criteria should be specified by the package designer and derived from the criteria established by the regulatory body and from other applicable standards developed to meet the regulatory requirements. The design assumptions refer to the design specification provided in items 1.2. and 1.3. and to other assumptions derived from the design specifications and used in the technical analyses. The design assumptions should take into account ageing mechanisms, as necessary (see also paras 613A.1 to 613A.4 of SSG-26 [2]).

The safety demonstration of a package design is required to be accomplished in accordance with para. 701 of the Transport Regulations by any of the following methods or by a combination thereof:

(i) The results of physical testing of prototypes or models of appropriate scale;

When a programme for physical testing of prototypes or models of appropriate scale is implemented for a specific design to be approved by the competent authority, the competent authority should be notified of the programme in advance of the testing and the competent authority should be allowed to witness testing. When such a programme of tests is done without competent authority approval, but is part of the safety analysis, its validity is to be determined by the competent authority.
APPENDIX V - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING FISSILE NUCLIDES

(ii) Reference to previous satisfactory demonstrations of a sufficiently similar nature. Test results of designs similar to the design under consideration are permissible if the similarity can be demonstrated sufficiently by justification and validation;

(iii) Calculation or reasoned argument, when the calculation procedures are generally agreed to be suitable and conservative. Assumptions should be clearly stated and fully justified, including by physical testing if applicable.

Additional recommendations are provided in paras 701.1-701.25 of SSG-26 (Rev. 1) [2].

The methods or standards used in each analysis specified in items 2.1 to 2.4 of the PDSR should include a description of the analysis technique used, the limitations and accuracy of this technique and the demonstration of the correct application of the technique for the analysis of the package design.

If computer codes are used for the safety analysis, then additional information should be included in order to justify that the code is verified and validated in its field of use.

(d) The performance characteristics of the package design should be assessed. More than one sequence of tests might need to be considered to ensure that the various safety functions, to be fulfilled by different components of the package design, comply with the regulatory requirements. Other hazards that may have a consequential effect on the safety functions should be analysed. This may concern corrosion, combustion, pyrophoricity or other chemical reactions, radiolysis, phase changes.

(e) The results of the technical analyses should be compared with the acceptance criteria and package design assumptions and regulatory compliance should be justified accordingly.

V.9. The following items listed in Figure 1 and para. 2.4 of this Safety Guide, are not relevant to and not needed for packages containing fissile nuclides:

— Part 2:
 — Other analyses.

<table>
<thead>
<tr>
<th>TABLE 5. ADDITIONAL INFORMATION PDSR FOR PACKAGES CONTAINING FISSILE NUCLIDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 1</td>
</tr>
<tr>
<td>1.1. ADMINISTRATIVE INFORMATION</td>
</tr>
<tr>
<td>Group No 2:</td>
</tr>
<tr>
<td>Group No 3:</td>
</tr>
<tr>
<td>Group No 4:</td>
</tr>
</tbody>
</table>
The following administrative information should be added, when necessary:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a)</td>
<td>Colloquial name of the package, if applicable;</td>
</tr>
<tr>
<td>b)</td>
<td>A certificate of approval of the package design for fissile material issued by the competent authority.</td>
</tr>
</tbody>
</table>

1.2. SPECIFICATION OF THE CONTENTS

The description of the contents and of their physical and chemical forms and radionuclides should be sufficiently precise to allow the demonstration of compliance with the requirements for prevention of criticality.

The following information should be added, as necessary:

- **Group No 2**: Mass of fissile nuclides and enrichment, if applicable.
- **Group No 3**:
 - (a) Mass of fissile nuclides and enrichment, if applicable;
 - (b) Other limitations to the contents as described in para. 674 (d) or 675 (c) of the Transport Regulations;
 - (c) The formula for calculating the criticality safety index (CSI) in accordance with para. 674 or 675 of the Transport Regulations.
- **Group No 4**:
 - (a) Mass of fissile nuclides and enrichment of the contents, if applicable. A description of quantities of nuclides not defined as fissile, but able to sustain chain reaction (e.g. if certain actinides could be present in sufficient quantity or concentration to increase the neutron multiplication factor, their concentrations and/or quantities should be defined).
 - (b) The criticality safety index (CSI) and the value of the number N defined in paras 684 and 685 of the Transport Regulations.
 - (c) Safety relevant limits for non-radioactive materials (e.g. moderators, reflectors), for example limits in material composition, density, form, location within package, restrictions of relative quantities of materials.

Criticality safety can be very sensitive to the presence and geometrical arrangement of fissile material (e.g. possibility and size of lattice arrangements), moderators (e.g. water, graphite, beryllium, and other light elements) and reflectors. This should be taken into account in the description of the permitted and not permitted contents.

1.3. SPECIFICATION OF THE PACKAGING

No additional information is needed for Group No 2.

The following information should be added, when necessary:

Group No 3:

- (a) A list of packaging components important to safety and their materials, including their specifications;
- (b) The packaging body, lid (closure mechanism and tamper-indicating features) and internal arrangements;
- (c) The shock absorbing components;
- (d) Testing specifications and controls before first use to transport radioactive material, including acceptance tests to ensure compliance of the fabrication to the design.

Group No 4:
APPENDIX V - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING FISSILE NUCLIDES

(a) The overall dimensions, the maximum mass of the package, when fully loaded, and the mass of the empty packaging (additional configurations may be included, depending on the operation conditions);
(b) A list of packaging components important to safety and their material, including their specifications and methods of manufacture, specifications for material procurement, welding, other special processes, non-destructive evaluation and testing;
(c) The maximum normal operating pressure.
(d) A description of the packaging body, lid (closure mechanism and tamper-indicating features) and internal arrangements, and components for lifting and tie-down;
(e) A description of the package components of the confinement system (such as neutron poisons, moderators, flux traps and spacer);
(f) A description of the packaging components for thermal protection;
(g) A description of the packaging components for heat dissipation;
(h) A description of the protection against corrosion;
(i) A description of the shock absorbing components;
(j) Testing specifications and controls before first use to transport radioactive material (acceptance tests to ensure compliance of the fabrication to the design). See also para. 501 of the Transport Regulations.

1.4. AGEING CONSIDERATIONS

Depending on the package design, the information relating to the ageing considerations, expected in this section of the PDSR, can be provided by the package designer directly in the table mentioned in item 1.6.

For packagings used once for a single transport and not intended for shipment after storage, this section should be left blank.

For all other packagings, this section of the PDSR should include the following information:

(a) The intended conditions of use of the package that might influence ageing;
(b) The potential ageing mechanisms that are relevant for the package design, taking into account the intended conditions of use of the package;
(c) Operational measures (including maintenance and inspection activities before shipment) to monitor and limit the ageing effects;
(d) Analysis of the influence of the ageing of packaging and contents on the design assumptions for demonstration of compliance with the regulations, including the technical analyses in Part 2 of the PDSR. In this analysis the specified intended use conditions, ageing mechanisms and operational measures should also be considered.

More recommendations are provided in paras 613A.1 to 613A.4 of SSG-26 (Rev. 1) [2].

1.5. PACKAGE PERFORMANCE CHARACTERISTICS

No additional information is needed for Groups No 2 and No 3.

Group No 4: The main design principles and performance characteristics of the package design to meet the criticality safety requirements of the Transport Regulations should be described in this section.

This section should summarize the analyses performed in Part 2 of the PDSR and describe how analysis assumptions and data used for the criticality safety analysis are derived from the design and the behaviour of the package for routine, normal and accident conditions of transport, also taking into account ageing mechanisms (see item 1.4. of the PDSR).
This section should enable the package designer to ensure that the design and the various parts of the safety demonstration are compatible with one another.

All assumptions about the state of the package used in the criticality safety assessment for normal and accident conditions of transport should be listed and well justified. The state of the parts of the confinement system under normal and accident conditions should be derived from the design and the behaviour of the package under the test conditions, otherwise conservative assumptions should be taken, and their conservatism should be demonstrated.

Often test conditions leading to the maximum damage in terms of activity release or dose rate increase do not result in the maximum neutron multiplication. Therefore, for the criticality safety assessment additional tests may have to be considered. For any parameter not justified, the value leading to maximum neutron multiplication should be identified and used in the criticality safety assessment. For cases where complete or partial water filling of cavities is important for criticality safety, the filling states considered and those excluded from the assessment should be described and justified.

1.6. COMPLIANCE WITH REGULATORY REQUIREMENTS

The PDSR should include a complete list of all paragraphs of the Transport Regulations and other international or national regulations applicable to packages containing fissile nuclides.

Compliance of the package design with these regulations should be demonstrated in the PDSR. This could be done using a table or any other written format linking the appropriate items of the PDSR, where compliance is demonstrated, to the applicable paragraphs of the regulations.

The applicable paragraphs of the Transport Regulations for packages containing fissile nuclides are provided in a matrix in Annex I.

1.7. PACKAGE OPERATIONS

The following information should be added, when necessary:

Group No 2:

— Any operational controls to be applied during transport, including consignment and conveyance limits.

Group No 3:

— Specifications for assembling of the packaging components, (including compliance with the requirements established in para. 637 of the Transport Regulations.

Group No 4:

— Testing specifications and controls before each shipment:

(i) The methods used for operational controls and tests, in particular those required in paras 502 and 503 of the Transport Regulations, should be detailed;

(ii) For drying operations, the method used should prevent formation of ice;

(iii) For leak tightness testing, qualified methods should be implemented (see item 1.3. of the PDSR). For packages that are or have been in contact with water, it should be demonstrated that the presence of water does not impair the validity of the leak tightness testing by sealing the leakage paths;

(iv) The check for the presence of absorber rods or selection of inner equipment with the correct neutron absorber content should be specified, if applicable;
1.8. MAINTENANCE

No additional information is needed for Groups No 2 and No 3.

Group No 4: The following information should be added, if necessary:
- Periodic maintenance and inspection activities should be detailed and may include the following activities and tests, depending on the package design:
 - Visual inspections and measurements, including tie-down and handling attachments;
 - The control of all void spaces of the package (cavity and other spaces), in particular regarding water penetration;
 - Weld examinations;
 - Structural and pressure tests, including internal enclosures, tie-down and handling attachments;
 - Component and material tests, including tests for screws, bolts, welds, neutron absorbers, basket.
- The definition of the periodicity of replacement of the packaging components should take into account any reduction in efficiency due to wear, corrosion and ageing.
- The justification of the periodicity of activities, when needed, should also be included in this section.

1.9. GAP ANALYSIS PROGRAMME

No additional information is needed for Groups No. 2 and No.3.

Group No.4: Additional information about the systematic procedure for a periodic evaluation of changes in technical knowledge should be provided, if necessary.

1.10. MANAGEMENT SYSTEM

No additional information is needed for Groups No 2 and No 3.

Group No 4: The management system should include the following information, if necessary:
- Package design, PDSR, documentation, records;
- Manufacture and testing of the package;
- Operation (loading, transport, storage in transit, receipt, and unloading);
- Maintenance, repair and inspection of the package.

The actions to be performed to check the compliance of the operational documents with the PDSR and the management of deviations detected in the framework of any transport activity should be described in the management system.

For all components important to safety, this section of the PDSR should define the parameters to be guaranteed and the level of controls during manufacturing and maintenance.

1.11. PACKAGE ILLUSTRATION
No additional information is needed for Group No 2.

Group No 3: A reproducible illustration should be provided showing the make-up of the package, including shock absorbers and packaging inserts, if applicable.

The illustration should indicate at least the overall outside dimensions and the masses for empty and loaded conditions.

Group No 4: A reproducible illustration should be provided showing the make-up of the package, including shock absorbers, devices for thermal protection and packaging inserts, if applicable.

The illustration should indicate at least the overall outside dimensions and the masses for empty and loaded conditions.

Part 2

2.1. STRUCTURAL ANALYSIS

There is no need for an additional structural analysis for Groups No 1 and No 2.

An additional structural analysis should be performed under the following conditions:

— For Group 3, an additional structural analysis for industrial packages should be included if the demonstration of compliance with the requirements established in para. 674 (b) or (c) of the Transport Regulations relies on the performance of the package under normal conditions of transport and is not otherwise assessed for the package design.

— For Group 4, if the criticality safety assessment relies on the performance of the package under normal or accident conditions of transport and is not otherwise assessed for the package design.

The additional structural analysis of the mechanical behaviour (including, as applicable, analysis of thermal stresses, fatigue, brittle fracture and creep) for routine, normal and accident conditions of transport should cover:

(a) The components of the confinement system;

(b) Any other package components (e.g. shock absorbing components, packaging components that provide heat dissipation) whose performance may have a consequential effect upon (a);

(c) The mechanical stability of the fissile material and any structure that is used to maintain its geometry, if necessary, for the criticality safety assessment. Other important criticality safety relevant items that should be considered are water leaking into or out of the package (totally or partially), the rearrangement of the fissile material and the degradation of neutron traps.

See also the remarks in item 1.3. of the PDSR.

The following points should be taken into account:

(1) General remarks:

(i) The mechanical properties of the materials considered in the safety demonstration should be representative of the range of mechanical properties of the package components. The analysis should also consider the temperature range of the respective package components for the ambient temperature range of -40°C to +38°C or another temperature range specified by the competent authority in accordance with para. 679 of the Transport Regulations;

(ii) The impacts on the package behaviour due to variations in the shock absorbing properties of the shock absorber material (e.g. wood, polymers, plaster, concrete) should be analysed for an ambient temperature range of -40°C to +38°C, or another temperature range specified by the competent authority in accordance with para. 679 of the Transport Regulations, or for moisture;
APPENDIX V - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING FISSILE NUCLIDES

(iii) The safety against brittle fracture of components of the confinement system made of potentially brittle materials (e.g. ferritic steels, cast iron) should be analysed at -40°C or another temperature specified by the competent authority in accordance with para. 679 of the Transport Regulations;

(iv) The strength of lid bolts should be justified for all drop orientations;

(v) Any excursion in the plastic domain should be avoided to the extent possible for confinement system components, such as bolts and gasket seats that would require additional complex proofs concerning the mechanics of the rupture or the maintenance of sufficient gasket seating;

(vi) Any possible damage of metallic seals after drops due to vibrations or sliding of the lid should be evaluated;

(vii) The internal components (e.g. content, basket, cage) should be verified to ensure that they are not liable to damage the confinement system. For the evaluation of the impact of internal components to the packaging lid, the maximum possible gap between these components and the lid before the drop should be considered;

(viii) The condition of the confinement system should be determined to demonstrate compliance with the specification of packaging presented in item 1.3. of the PDSR for an ambient temperature range from -40°C to +38°C or another temperature range specified by the competent authority in accordance with para. 679 of the Transport Regulations;

(ix) Retention of sufficient thermal protection, after the mechanical tests for accident conditions of transport, to guarantee the confinement system during the thermal tests should be demonstrated;

(x) The effect of the thermal test on the mechanical behaviour of the package components should be considered (e.g. thermal stresses and strains, thermo-mechanical interactions between package components, interactions of the package components with contents);

(xi) An appropriate water immersion test should be considered.

(2) Considerations for experimental mechanical testing

(i) The package orientations should be determined in accordance with paras 722.4 and 727.5 of SSG-26 (Rev. 1) [2]. The orientations should be such that maximize the loading of the package (in terms of stress, strain, acceleration and deformation) with consideration of the different package components (e.g. cask body, lid system, impact limiter) and of the protection objective (criticality safety).

For package orientations, the following tests should be considered:

— Tests that maximize the stresses and acceleration (flat, slap down): the greater the impact area, the harder the impact, under the assumption of constant stiffness per unit area;

— Tests that maximize the deformation (e.g. on corner, on edges): the smaller the impact area, the greater the crushing;

— Tests that maximize the damage to orifices, notably by a puncture bar. The containment components in the orifices are often thin and more liable to be damaged by the bar than the body of the packaging;

— Tests that maximize the risk of perforation by a puncture bar, possibly oblique: if the impacted package surface is oblique with respect to the puncture bar, the initial impact takes place on an edge of the puncture bar and the risk of perforation is much higher.

(ii) For reduced scale models, similar or conservative geometry and material properties are to be used as with the original design.

(iii) The results of the drop test with reduced scale models should be assessed to ensure that they are covering and/or transferable to the original design.

(iv) The representativeness of drop tests performed with reduced scale models should be demonstrated for the following parameters and components:
— Drop heights: it might be necessary to increase the drop heights during testing to simulate the total potential energy that would have been received by the package at full scale. This should be considered for drop tests where the characteristic deformation of the structure is not negligible in comparison to the drop height;
— Appropriate geometry scaling of all components (e.g. lids, nuts and bolts, grooves for the seals);
— Metallic gaskets: same design, same material and homothetic transformation with regard to elastic restitution should be selected;
— O-rings: the selection should be based on the similarity of the useful elastic restitution taking into account the compression set. The change of material properties with the temperature conditions should be considered;
— The scaling of tightening torques for bolts of the reduced scale model should take into account the dispersion of friction conditions, precision of torques and technical limitations in an exact geometrical and physical scaling of the containment system components;
— Welding seams should be similar in the scale model and package design;
— For reduced scale model drop testing with significant deformations of impact limiters, the original package performance should be carefully justified.

The experimental mechanical tests should be conducted and reported in accordance with the management system. The test report should address the verification of the package before testing, the description of the test site, the equipment used for measurements and its calibration data and the results of the measurements performed. This report should also contain pictures showing and explaining the performing conditions of the tests and their results.

(3) **Considerations for calculations:**

(i) See point 2.1 (i) in this appendix;
(ii) Validated computer codes should be used. It should be justified that input parameters (e.g. material laws, characteristic values, boundary conditions) describe sufficiently and precisely the real technical and physical problems;
(iii) If uncertainties exist regarding important input parameters (e.g. material laws), conservative design calculations including the possible range of material properties should be performed;
(iv) Data used (e.g. material laws, boundary conditions, load assumptions) and calculation results are to be documented comprehensibly.

2.2. THERMAL ANALYSIS

The temperature of the package components should be assessed in accident conditions of transport (see para. 659 (b) of the Transport Regulations). The thermal analysis should include the thermal behaviour of the following components:

(a) The components of the confinement system;
(b) The package components whose performance will have a consequential effect upon (a).

The following remarks should be taken into account:

— The effects of insolation on a period of 12 hours in accordance with para. 657 of the Transport Regulations. Averaging the results of insolation on 24 hours should not be accepted;
— Consideration of the solar insolation before and after the thermal test as defined in para. 728 of the Transport Regulations;
— The justification for simplifying the assumptions (e.g. absence of trunnions) used for calculation in normal and accident conditions of transport;
— The analysis of the package in accident conditions of transport under the position (horizontal or vertical) less resistant to thermal tests;
— The value of the surface absorptivity coefficient of the package. The surface absorptivity coefficient should not be lower than 0.8 (see para. 728 (a) of the Transport Regulations) during and after the thermal test to account for deposits upon the package surface. The surface absorptivity coefficient should also not be lower than the possible maximum value of the emissivity coefficient in routine conditions of transport;
— The evaluation of the minimum and maximum temperatures of the various components of the packaging, taking account of all the possible positions for the radioactive contents;
— The profile of heat power based on the burnup distribution in irradiated fuels considered in the thermal analyses;
— The justification that the concentration of oxygen present in the furnace is controlled and in conformity with that obtained in a hydrocarbon fuel-air fire, when the thermal test is conducted in a furnace and when it is noted that some package components burn. In addition, control of heat input should be considered thoroughly;
— The influence of combustible materials that generate additional heat input and affect the fire duration beyond the thermal test;
— The safety margins on temperature results derived using numerical modelling commensurate with the uncertainty associated to the numerical model;
— Demonstration that the spare volume in the gasket grooves allows for gasket thermal expansion in accident conditions of transport, unless appropriate justification is provided.

2.3. CONTAINMENT DESIGN ANALYSIS

The extent of the additional information to be considered in the containment design analysis depends of the assumptions used to demonstrate criticality safety with regards to the fissile material that escapes from the package (see para. 685 (c) of the Transport Regulations) and the quantity of water that leaks into or out of all void spaces of the package (see para. 680 of the Transport Regulations).

2.5. CRITICALITY SAFETY ANALYSIS

The general considerations for all technical analyses should be taken into account when performing the criticality safety analysis.

For packages designed to transport fissile material not excepted by paras 417, 674 or 675 of the Transport Regulations (i.e. packages in Group No. 4), the assessment of criticality safety for routine, normal and accident conditions of transport, for the isolated package and for the arrays of packages is required to be performed.

The following items, if applicable, should be taken into account in the criticality safety analysis:

(a) Contents:

 (i) All possible configurations with any possible geometrical and physical characteristics (e.g. dimensional tolerances, positions of the components, density of powders in normal or accident conditions of transport) within the range set by the description of the contents and the packaging (see items 1.3. to 1.6. of the PDSR);

 (ii) Materials with hydrogen concentration higher than that of water that may be present in the package;
APPENDIX V - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING FISSILE NUCLIDES

(iii) Natural or depleted uranium that may be present in the package, with appropriate assumptions relative to quantities and localization.

(b) Configurations to be analysed:

(i) If special features preventing water leakage are considered for the criticality safety analysis for a package in isolation (see para. 680 (a) of the Transport Regulations), the criterion for water tightness to be defined by the package designer and accepted by the competent authority should be given and justified in the PDSR. This criterion should be set in such a way to exclude ingress of an amount of water that could influence the criticality safety assessment. The testing conditions defined in para. 680 of the Transport Regulations should be taken into account;

(ii) For packages to be transported by air, subcriticality of the isolated package should be assessed under conditions consistent with Type C package tests, assuming reflection by at least 20 cm of water but no water leakage. If the behaviour of the package under these conditions is not assessed, typical envelope configurations should be considered, such as the following:
- The fissile material contained in one package (without consideration of water ingress from outside the package) in spherical shape reflected by 20 cm of water;
- The fissile material contained in one package (without consideration of water from outside the package), pure or mixed with all or part of the moderating materials of the package, in spherical shape, surrounded by the reflecting materials (e.g. steel, lead) of the package and reflected by 20 cm of water.

(iii) In modelling, all the elements of structures that could increase the neutron multiplication should be taken into account;

(iv) The package designer should check the qualification of criticality calculation tools and should specify the critical experiments used for benchmarking of the calculation tool that should be representative of the single package in isolation and the applicable arrays of packages. Special attention should be paid to systems (e.g. low-moderation systems, fuel assemblies) for which the qualification base is not really extended and for which it is desirable to use calculation models that are conservative in terms of calculation assumptions and provide margins to compensate for the lack of qualification, when applicable;

(v) When appropriate, the justifications should take into account all the possible ranges of the masses and moderations. Credible conditions of transport that might lead to preferential (heterogeneous) flooding of packages increasing the neutron multiplication should be considered;

(vi) For certain configurations where the interactions can be dominating, the impact of the variations of density of the fissile medium should be studied;

(vii) The heterogeneous nature of the fissile material during transport should be considered;

(viii) The assumption of a homogeneous enrichment equal to the average enrichment for uranium dioxide for boiling water reactor (BWR) assemblies should be proven to be conservative, especially if the assembly geometry may change under the test conditions specified in the Transport Regulations;

(ix) For spent fuel initially containing plutonium, a conservative irradiation level that takes into account the possible evolution of reactivity during irradiation should be considered.

Further recommendations on criticality safety assessments are given in Appendix VI of SSG-26 (Rev. 1) [2]. Further recommendations on the application of burnup credit in criticality safety assessments of spent nuclear fuel are provided in IAEA Safety Standards Series No. SSG-27, Criticality Safety in the Handling of Fissile Material [10]. Additional information can be found in ISO 27468 [11] and in publications from the Expert Group on Burn-up Credit Criticality Safety of the OECD/NEA Working Party on Nuclear Criticality Safety (WPNCS, see https://www.oecd-nea.org/science/wpnecs/buc/index.html).
APPENDIX VI.
ADDITIONAL INFORMATION FOR PACKAGES CONTAINING 0.1 KG OR MORE OF URANIUM HEXAFLUORIDE

VI.1. This appendix provides specific additional recommendations on the information to be provided in Parts 1 and 2 of the PDSR for packages containing 0.1 kg or more of uranium hexafluoride.

VI.2. The recommendations provided in this appendix apply in addition to those items belonging to the package type defined by the radioactive properties of the contents, see Appendices II to IV.

VI.3. Further recommendations are available in SSG-26 (Rev. 1) [2].

VI.4. For packages containing fissile nuclides, see in addition Appendix V.

VI.5. For technical analyses, compliance of the package with the Transport Regulations should be demonstrated by the package designer either directly in item 1.6. of the PDSR or, if necessary, in Part 2 of the PDSR.

VI.6. For each of the technical analyses in Part 2 of the PDSR, the following considerations apply:

a) The package design that is being evaluated should be precisely indicated by mentioning the drawing (see item 1.3. of the PDSR), including its revision number, and the specification of contents (see item 1.2. of the PDSR), including its revision number.

b) The acceptance criteria for the technical analyses and the package design assumptions relating to geometry or performance characteristics should be defined and justified when necessary. The acceptance criteria should be specified by the designer derived from the criteria established by the regulatory body and from other applicable standards developed to meet the regulatory requirements. The design assumptions refer to the design specification provided in items 1.2. and 1.3. of the PDSR and to other assumptions derived from the design specification and used in the technical analyses. The design assumptions should take into account ageing mechanisms, as necessary. Additional recommendations are provided in paras 613A.5 of SSG-26 (Rev.1) [2].

c) The safety demonstration of a package design is required to be accomplished in accordance with para. 701 of the Transport Regulations by any of the following methods or by a combination thereof:

 (i) The results of physical testing of prototypes or models of appropriate scale;

 When a programme for physical testing of prototypes or models of appropriate scale is implemented for a specific package design to be approved by the competent authority, the competent authority should be notified of the programme before the testing and should be allowed to witness testing. When such a programme of tests is done without competent authority approval, but is part of the safety analysis, its validity is to be determined by the competent authority.

 (ii) Reference to previous satisfactory demonstrations of a sufficiently similar nature. Test results of designs similar to the design under consideration are permissible if the similarity can be demonstrated sufficiently by justification and validation;

 (iii) Calculation or reasoned argument, when the calculation procedures are generally agreed to be suitable and conservative. Assumptions should be clearly stated and fully justified, including by physical testing if applicable.

 Additional recommendations are provided in paras 701.1-701.25 of SSG-26 (Rev. 1) [2].

The methods or standards used in each analysis specified in paras 2.1 to 2.3 of this appendix should include a description of the analysis technique used, the limitations and accuracy of this technique and the demonstration of the correct application of the technique for the analysis of the package design.
APPENDIX VI - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING
0.1 KG OR MORE OF URANIUM HEXAFLUORIDE

If computer codes are used for the safety analysis, then additional information should be included in the PDSR to justify that the code is verified and validated in its field of use. The justification for the applicability of these codes should include a statement of possible sources of errors and/or uncertainties relative to the effects of the operating platform (computer) used and of modelling assumptions and simplifications as well as of any other parameter influencing the calculated results. This may include sensitivity analysis.

d) The performance characteristics of the package design should be assessed. More than one sequence of tests might need to be considered to ensure that the various safety functions, to be fulfilled by different components of the package design, comply with the regulatory requirements. Other hazards that may have a consequential effect on the safety functions should be analysed. This may concern corrosion, combustion, pyrophoricity or other chemical reactions, radiolysis, phase changes.

e) The results of the technical analyses should be compared with the acceptance criteria and package design assumptions and regulatory compliance should be justified accordingly.

VI.7. The following items listed in Figure 1 and para. 2.4 of this Safety Guide, are not relevant and not needed for packages containing 0.1 kg or more of uranium hexafluoride:

— Part 2:
 - Dose rate analysis;
 - Criticality safety analysis;
 - Other analyses.

TABLE 6. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING URANIUM HEXAFLUORIDE

<table>
<thead>
<tr>
<th>1. Part 1</th>
</tr>
</thead>
</table>

1.1. ADMINISTRATIVE INFORMATION

The colloquial name of the package, if applicable, should be added.

1.2. SPECIFICATION OF THE CONTENTS

Compliance with the requirements for packages containing uranium hexafluoride established in para. 420 of the Transport Regulations should be considered.

1.3. SPECIFICATION OF THE PACKAGING

The following information should be added, when necessary:

(a) A list of packaging components important to safety and their material, including the specifications and methods of manufacture of the components, specifications for material procurement, welding, other special processes, non-destructive evaluation and testing.
(b) A description of the packaging body and closure mechanism;
(c) A description of the packaging components for thermal protection;
(d) A description of the protection against corrosion;
(e) A description of the protection against contamination;
(f) A description of the shock limiting components;
(g) Testing specifications and controls before first use to transport uranium hexafluoride.
APPENDIX VI - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING
0.1 KG OR MORE OF URANIUM HEXAFLUORIDE

TABLE 6. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING URANIUM
HEXAFLUORIDE

1.4. AGEING CONSIDERATIONS

Depending on the package design, the information relating to the ageing considerations, expected in this
section of the PDSR, can be provided by the package designer directly in the table mentioned in item
1.6.

For packagings used once for a single transport and not intended for shipment after storage, this section
of the PDSR should be left blank.

For all other packagings, this section of the PDSR should include:

(a) The intended conditions of use of the package that might influence ageing;
(b) The potential ageing mechanisms that are relevant to the package design taking into account the
intended conditions of use of the package;
(c) Operational measures (including maintenance and inspection before shipment) to monitor and
limit the ageing effects;
(d) Analysis of the influence of the ageing of packaging and contents on the design assumptions for
demonstration of compliance with the regulations including the technical analyses in Part 2 of
the PDSR. In this analysis, the specified intended use conditions, ageing mechanisms and
operational measures should be considered.

More recommendations are provided in para 613A.5 of SSG-26 (Rev. 1) [2].

1.5. PACKAGE PERFORMANCE CHARACTERISTICS

The following information should be added, when necessary:

— The package designer should describe the main principles and performance characteristics of the
package design to meet the safety requirements (e.g. leakage, stress, rupture) of the Transport
Regulations.
— This section should summarize the analyses performed in Part 2 of the PDSR and describe how
analysis assumptions and data used for the safety analysis – especially regarding leakage, stress,
rupture – are derived from the design and the behaviour of the package for routine, normal and
accident conditions of transport, also taking into account ageing mechanisms (see item 1.4. of the
PDSR).
— This section should enable the package designer to ensure that the design and the various parts of
the safety demonstration are compatible with one another.

1.6. COMPLIANCE WITH REGULATORY REQUIREMENTS

The PDSR should include a complete list of all paragraphs of the Transport Regulations and other
international or national regulations applicable to packages containing 0.1 kg or more of uranium
hexafluoride.

Compliance of the package design with these regulations should be demonstrated in the PDSR. This
could be done using a table or any other written format linking the appropriate items of the PDSR, where
compliance is demonstrated, to the applicable paragraphs of the regulations.

The applicable paragraphs of the Transport Regulations for packages containing 0.1 kg or more of
uranium hexafluoride are provided in a matrix in Annex I.
TABLE 6. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING URANIUM HEXAFLUORIDE

<table>
<thead>
<tr>
<th>1.7. PACKAGE OPERATIONS</th>
<th>1.8. MAINTENANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The PDSR should include the measures to be implemented to assure compliance with the requirements established in para. 420 of the Transport Regulations.</td>
<td>The PDSR should include the measures to be implemented to assure compliance with ISO 7195 Standard, as required by para. 631 of the Transport Regulations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1.9. GAP ANALYSIS PROGRAMME</th>
<th>1.10. MANAGEMENT SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additional information about the systematic procedure for a periodic evaluation of changes in technical knowledge should be provided, if necessary.</td>
<td>The PDSR should include the specification of the management system that is established and implemented by the package designer, as required in para. 306 of the Transport Regulations to ensure compliance with the relevant provisions of the Transport Regulations.</td>
</tr>
</tbody>
</table>

The management system should include the following information:

(a) Package design, PDSR, documentation, records;
(b) Manufacture and testing of the packaging;
(c) Operation (loading, transport, storage in transit, receipt and unloading);
(d) Maintenance, repair and inspection of the packaging.

The management system should be commensurate with the complexity of the package design and should include a reliable document control system.

The actions to be performed to check the compliance of the operational documents with the PDSR and the management of deviations detected in the framework of any transport activity should be described in the management system.

For all components important to safety, this section of the PDSR should define the parameters to be guaranteed and the level of controls during manufacturing and maintenance.

More recommendations on the management system for transport are provided in TS-G-1.4 [6].

<table>
<thead>
<tr>
<th>1.11 PACKAGE ILLUSTRATION</th>
<th>2.1. STRUCTURAL ANALYSIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A reproducible illustration should be provided showing the make-up of the package, including shock absorbers, devices for thermal protection and packaging inserts, if applicable.</td>
<td></td>
</tr>
<tr>
<td>The illustration should indicate at least the overall outside dimensions and the masses for empty and loaded conditions.</td>
<td></td>
</tr>
</tbody>
</table>

| Part 2 | |
|--------| |
The general considerations for all technical analyses should be taken into account when performing the structural analysis to demonstrate compliance with the requirements established in paras 632 (a) and (b) of the Transport Regulations.

The assessment of the mechanical behaviour (including, as applicable, analysis of thermal stresses, fatigue, brittle fracture and creep) for routine, normal and accident conditions of transport should include the following:

- (a) The components of the containment system;
- (b) Any other package components (e.g. shock absorbing components, packaging components that provide heat dissipation) whose performance may have a consequential effect upon (a).

The following points should be taken into account:

1. **General remarks:**
 - (i) The mechanical properties of the materials considered in the safety demonstration should be representative of the range of mechanical properties of the package components considering the temperature range applicable to the type of package;
 - (ii) The impacts on the package behaviour due to variations in the shock absorbing properties of the shock absorber material should be analysed considering the temperature range applicable to the type of package or moisture;
 - (iii) The safety against brittle fracture should be analysed considering the temperature range applicable to the type of package;
 - (iv) It should be verified that the content is not liable to damage the containment system;
 - (v) The condition of the containment system should be determined to demonstrate compliance with the specifications the packaging (see item 1.3. of the PDSR) within the temperature range applicable to the type of package;
 - (vi) The ability to withstand the maximum pressure during the thermal test (elevation of pressure of UF₆) should be demonstrated.

2. **Considerations for experimental mechanical testing:**
 - (i) The package orientations should be determined in accordance with para. 722.4 of SSG-26 (Rev. 1) [2]. The orientations should be such that maximize the loading of the package (sin terms of stress, strain, acceleration and deformation) with consideration of the different package components (e.g. cask body, lid system, impact limiter) and of the protection objective (containment).

 For package orientations, the following aspects should be considered, as appropriate:
 - Tests that maximize the stresses and acceleration (flat, slap down): the greater the impact area, the harder the impact, under the assumption of constant stiffness per unit area;
 - Tests that maximize the deformation (e.g. on corner, on edges): the smaller the impact area, the greater the crushing;
 - Tests that maximize the damages to valves, notably by a puncture bar;
 - Tests that maximize the risk of perforation by a puncture bar, possibly oblique: if the package impacted surface is oblique with respect to the puncture bar, the initial impact takes place on an edge of the puncture bar and the risk of perforation is much higher.

 (ii) For reduced scale models, similar or conservative geometry and material properties are to be used as with the original design.
APPENDIX VI - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING 0.1 KG OR MORE OF URANIUM HEXAFLUORIDE

TABLE 6. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING URANIUM HEXAFLUORIDE

(iii) The results of the drop test with reduced scale models should be assessed to ensure that they are covering and/or are transferable to the original design.

(iv) The representativeness of drop tests performed with reduced scale models should be demonstrated for the following parameters and components:
 — Drop heights: it might be necessary to increase the drop heights during testing to simulate the total potential energy that would have been received by the package at full scale. This should be considered for drop tests where the characteristic deformation of the structure is not negligible in comparison to the drop height;
 — Appropriate geometry scaling of all components;
 — The scaling of tightening torques for bolts of the reduced scale model should take into account the dispersion of friction conditions, precision of torques and technical limitations in an exact geometrical and physical scaling of the containment system components;
 — Welding seams should be similar for scale model and package design;
 — For reduced scale model drop testing with significant deformations of impact limiters, the original package performance should be carefully justified.

The experimental mechanical tests should be conducted and reported in accordance with the management system. The test report should address the verification of the package before testing, the description of the test site, the equipment used for measurements and its calibration data and the results of the measurements performed. This report should also contain pictures showing and explaining the performing conditions of the tests and their results.

(3) Considerations for calculations:
 (i) See point 2.1(i) in this section;
 (ii) Validated computer codes should be used. It should be justified that input parameters (material laws, characteristic values, boundary conditions etc.) describe sufficiently and precisely the real technical/physical problems;
 (iii) If uncertainties exist regarding important input parameters (e.g. material laws), conservative design calculations including the possible range of material properties should be performed;
 (iv) Data used (material laws, boundary conditions, load assumptions etc.) and calculation results should be documented comprehensibly.

2.2. THERMAL ANALYSIS

The general considerations for all technical analyses should be taken into account when performing the thermal analysis.

The temperatures of the package components should be assessed in accident conditions of transport (see para. 659 (b) of the Transport Regulations). The thermal analysis should include the thermal behaviour of the following components:
 — The components of the containment system;
 — The package components whose performance will have a consequential effect upon (a).

The demonstration of compliance should be limited to show compliance with para. 632 (c) of the Transport Regulations.

The following remarks should be taken into account:
APPENDIX VI - ADDITIONAL INFORMATION FOR PACKAGES CONTAINING 0.1 KG OR MORE OF URANIUM HEXAFLUORIDE

TABLE 6. ADDITIONAL INFORMATION FOR PACKAGES CONTAINING URANIUM HEXAFLUORIDE

| ———— | ———— |
|—— The effects of insolation on a period of 12 hours in accordance with para. 657 of the Transport Regulations. Averaging the results of insolation on 24 hours should not be accepted; |
|—— Consideration of the solar insolation before and after the thermal test as defined in para. 728 of the Transport Regulations; |
|—— The justification for simplifying the assumptions used for calculation in normal and accident conditions of transport; |
|—— The analysis of the package in accident conditions of transport in the position (horizontal or vertical) less resistant to thermal tests; |
|—— The value of the surface absorptivity coefficient of the package. The surface absorptivity coefficient should not be lower than 0.8 (see para. 728 (a) of the Transport Regulations) during and after the thermal test to account for deposits upon the package surface. The surface absorptivity coefficient should also not be lower than the possible maximum value of the emissivity coefficient in routine conditions of transport; |
|—— The evaluation of the minimum and maximum temperatures of the various components of the packaging, taking account of all the possible positions for the radioactive contents; |
|—— The justification that the concentration of oxygen present in the furnace is controlled and in conformity with that obtained in a hydrocarbon fuel-air fire, when the thermal test is made in a furnace and when it is noted that some package components burn. In addition, control of heat input should be considered thoroughly; |
|—— The influence of combustible materials that generate additional heat input and affect the fire duration beyond the thermal test; |
|—— The safety margins on temperature results derived using numerical modelling commensurate with the uncertainty associated to the numerical model. |

2.3. CONTAINMENT DESIGN ANALYSIS

Compliance with para. 632 of the Transport Regulations should be demonstrated in the structural analysis.
REFERENCES

ANNEX I

MATRIX OF APPLICABLE REQUIREMENTS OF THE TRANSPORT REGULATIONS FOR DIFFERENT PACKAGE TYPES AND ADDITIONAL PROVISIONS

Table I.1. Matrix of Applicable Requirements of the Transport Regulations for Different Package Types and Additional Provisions

<table>
<thead>
<tr>
<th>SSR-6 (Rev. 1) [1]</th>
<th>Package Type</th>
<th>Additional provisions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excepted</td>
<td>IP-1</td>
<td>IP-2</td>
<td>IP-3</td>
</tr>
<tr>
<td>408-411</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>412-414</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>415, 416</td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>417, 418</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>419, 420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>422-427</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>429-430</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>431, 432</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ACTIVITY LIMITS AND CLASSIFICATION

- LSA classification and activity limits, §410: transport by air
- SCO classification and activity limits
- If special form radioactive material or low dispersible radioactive material is present, add reference to approval certificate
- Classification as fissile material, exceptions and restrictions
- Classification as uranium hexaflouride and restrictions
- Classification as excepted package
- Activity limit for type A package
- Classification as type C package and activity limits
Table I.1. Matrix of Applicable Requirements of the Transport Regulations for Different Package Types and Additional Provisions

<table>
<thead>
<tr>
<th>SSR-6 (Rev. 1)</th>
<th>Package Type</th>
<th>Additional provisions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>Exected</td>
<td>IP-1 IP-2 IP-3 A B(U), B(M) C Fissile UF₆</td>
<td></td>
</tr>
<tr>
<td>433</td>
<td>X</td>
<td></td>
<td>Activity limits for type B(U) and B(M) packages by air</td>
</tr>
</tbody>
</table>

REQUIREMENTS AND CONTROLS FOR TRANSPORT

<table>
<thead>
<tr>
<th>Requirements before first shipment</th>
<th>Requirements before each shipment</th>
<th>Additional items in the package</th>
<th>Other dangerous properties</th>
<th>Excepted package requirements</th>
<th>Dose rate of unshielded LSA or SCO</th>
<th>Package for LSA material and SCO</th>
<th>Activity limit for LSA and SCO</th>
<th>TI and CSI limits</th>
<th>Dose rate at contact of a package</th>
<th>Marking</th>
<th>Transport by sea</th>
</tr>
</thead>
<tbody>
<tr>
<td>501</td>
<td>X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>502, 503</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>X X X X X X</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>X X X X X X</td>
<td></td>
</tr>
<tr>
<td>515-516</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>521</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>522</td>
<td>X X X</td>
<td></td>
</tr>
<tr>
<td>526</td>
<td>X X X X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>527, 528</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>533, 534</td>
<td>X X X X X X X</td>
<td></td>
</tr>
<tr>
<td>535, 536</td>
<td>X X X X X X</td>
<td></td>
</tr>
<tr>
<td>575</td>
<td>X X X X X</td>
<td></td>
</tr>
</tbody>
</table>
Table I.1. Matrix of Applicable Requirements of the Transport Regulations for Different Package Types and Additional Provisions

<table>
<thead>
<tr>
<th>SSR-6 (Rev. 1) [1]</th>
<th>Package Type</th>
<th>Additional provisions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exected</td>
<td>IP-1</td>
<td>IP-2</td>
</tr>
<tr>
<td>578</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

REQUIREMENTS FOR RADIOACTIVE MATERIAL AND FOR PACKAGINGS AND PACKAGES

<table>
<thead>
<tr>
<th></th>
<th>Package Type</th>
<th>Additional provisions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Exected</td>
<td>IP-1</td>
<td>IP-2</td>
</tr>
<tr>
<td>606-607-618</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>619-621</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>622</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>623</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>624</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>625</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>626</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>627-630</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>631-634</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>635-636</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>637</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>638-647</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

General provisions

Transport by air

Excepted packages

Type IP-1

Type IP-2

Type IP-3

Alternative requirements for Type IP-2

Alternative requirements

Uranium hexafluoride

Minimal dimensions

Seal

Type A
Table I.1. Matrix of Applicable Requirements of the Transport Regulations for Different Package Types and Additional Provisions

<table>
<thead>
<tr>
<th>SSR-6 (Rev. 1) [1]</th>
<th>Package Type</th>
<th>Additional provisions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excepted</td>
<td>IP-1</td>
<td>IP-2</td>
<td>IP-3</td>
</tr>
<tr>
<td>648</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>649</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>650</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>651</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>652</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>653-657</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>658-660</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>661-666</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>667, 668</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>669-672</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>673</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>674, 675</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>676 - 686</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TEST PROCEDURES
Table I.1. Matrix of Applicable Requirements of the Transport Regulations for Different Package Types and Additional Provisions

<table>
<thead>
<tr>
<th>SSR-6 (Rev. 1) [1]</th>
<th>Package Type</th>
<th>Additional provisions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Excepted</td>
<td>IP-1</td>
<td>IP-2</td>
</tr>
<tr>
<td>701</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>702</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>713-715</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>716</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>717</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>718</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>719-720</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>721</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>722</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>723</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>724</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>725</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>726</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>727 (a)</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>727 (b)</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table I.1. Matrix of Applicable Requirements of the Transport Regulations for Different Package Types and Additional Provisions

<table>
<thead>
<tr>
<th>SSR-6 (Rev. 1) [1]</th>
<th>Package Type</th>
<th>Additional provisions</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excepted</td>
<td>IP-1</td>
<td>IP-2</td>
<td>IP-3 A</td>
</tr>
<tr>
<td>727 (c)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>728</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>729</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>730</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>731-733</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>734</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>735</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>736</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>737</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

65
ANNEX II

REFERENCE DOCUMENTS USED BY COMPETENT AUTHORITIES FOR TECHNICAL ASSESSMENTS

<table>
<thead>
<tr>
<th>Country</th>
<th>Reference Document(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canada</td>
<td>ISO 2919 “Sealed radioactive sources - General requirements and classification”</td>
</tr>
<tr>
<td></td>
<td>ISO 9978 “Sealed Radioactive Sources - Leak Test Methods”</td>
</tr>
<tr>
<td></td>
<td>ISO 7195 “Packaging of uranium hexafluoride for transport”</td>
</tr>
<tr>
<td></td>
<td>ANSI N14.1 “Uranium Hexafluoride – Packaging for Transport”</td>
</tr>
<tr>
<td></td>
<td>ISO 12807 “Safe transport of radioactive materials - Leakage testing on packages”</td>
</tr>
<tr>
<td></td>
<td>ANSI N14.5 “Leakage Tests on Packages for Shipment of Radioactive Materials”</td>
</tr>
<tr>
<td></td>
<td>ANSI N14.7, Guidance for Packaging Type A - Quantities of Radioactive Materials</td>
</tr>
<tr>
<td></td>
<td>RD-364, Joint Canada - United States Guide for Approval of Type B(U) and Fissile Material Transportation Packages</td>
</tr>
<tr>
<td></td>
<td>ISO 9001, Quality management systems — Requirements</td>
</tr>
<tr>
<td>France</td>
<td>ASN Guide N°7 – Transport – Transport of packages or radioactive materials for civil use on public domain</td>
</tr>
<tr>
<td></td>
<td>Vol. 1: Applications for package design and shipment approvals: legal context, required documentation, approval certificate template, applicant obligations, reference demonstration methods and parameters, experience feedback of assessment key issues) – Vol. 2: European PDSR (Package Design Safety Reports) – Vol.3: Conformity of package designs that do not require a certificate of approval</td>
</tr>
<tr>
<td></td>
<td>ISO 2919 « Sealed radioactive sources - General requirements and classification»</td>
</tr>
<tr>
<td></td>
<td>ISO 9978 « Sealed Radioactive Sources - Leak Test Methods »</td>
</tr>
<tr>
<td></td>
<td>ISO 7195 « Packaging of uranium hexafluoride for transport »</td>
</tr>
<tr>
<td></td>
<td>ANSI N14.1 « Uranium Hexafluoride – Packaging for Transport »</td>
</tr>
<tr>
<td></td>
<td>ISO 12807 « Safe transport of radioactive materials - Leakage testing on packages»</td>
</tr>
<tr>
<td></td>
<td>ISO 10276 « Trunnions for packages used to transport radioactive material »</td>
</tr>
<tr>
<td></td>
<td>NF EN 25-030 – « Éléments de fixation - Assemblages vissés - Partie 1 : règles générales de conception, de calcul et de montage »</td>
</tr>
<tr>
<td></td>
<td>VDI 2230 – “Systematic calculation of high duty bolted joints”</td>
</tr>
<tr>
<td></td>
<td>ROARK’s Formulas for stress and strain; 7th edition, Warren C. YOUNG</td>
</tr>
<tr>
<td></td>
<td>Catalogue PMDS, CEA, Tome I « Ecrans de protection contre les rayonnements ionisants »</td>
</tr>
<tr>
<td></td>
<td>NF EN 10228-3, « Essais non destructifs des pièces forgées en acier - contrôle par ultrasons des pièces forgées en aciers ferritiques et martensitiques »</td>
</tr>
<tr>
<td>Germany</td>
<td>ANSI N14.1 “Uranium Hexafluoride – Packaging for Transport”</td>
</tr>
</tbody>
</table>
BAM-GGR 007 “Leitlinie zur Verwendung von Gusseisen mit Kugelgraphit für Transport- und Lagerbehälter für radioaktive Stoffe“

BAM-GGR 008 “Richtlinie für numerisch geführte Sicherheitsnachweise im Rahmen der Bauartzprüfung von Transport- und Lagerbehältern für radioaktive Stoffe“

DIN 25415 part 1 “Radioactively contaminated surfaces - Method for testing and assessing the ease of decontamination” FKM Guideline “Fracture Mechanics Proof of Strength for Engineering Components”

FKM Richtlinie “Rechnerischer Festigkeitsnachweis für Maschinenbauteile”

ISO 2919 “Sealed radioactive sources - General requirements and classification”

ISO 7195 “Packaging of uranium hexafluoride for transport”

ISO 9978 “Sealed Radioactive Sources - Leak Test Methods”

ISO 12807 “Safe transport of radioactive materials - Leakage testing on packages”

KTA 3905 “Load Attaching Points on Loads in Nuclear Power Plants”

R6 - Assessment of the Integrity of Structures Containing Defects. British Energy Generation Ltd.

VDI 2230 “Systematic calculation of high duty bolted joints”

DIN 25712 “Criticality safety taking into account the burnup of fuel for transport and storage of irradiated light water reactor fuel assemblies in casks”

ICRP Publication 103, the 2007 Recommendations of the International Commission on Radiological Protection

ICRP 74 “Conversion Coefficients for use in Radiological Protection against External Radiation”

United States of America

ANSI N14.1 “Uranium Hexafluoride – Packaging for Transport”

ISO 2919 “Sealed Radioactive Sources – General Requirements and Classification”

ISO 9978 “Sealed Radioactive Sources – Leak Test Methods”
CONTRIBUTORS TO DRAFTING AND REVIEW

Boyle, R. US Department of Transportation, United States of America
Capadona, N. International Atomic Energy Agency
Chrupek, T. Nuclear Safety Authority, France
Dejean, C. Institute for Radiological Protection and Nuclear Safety, France
Edwards, W. World Nuclear Transport Institute
Elechosa, C. Nuclear Regulatory Authority, Argentina
Ferran, G. Nuclear Safety Authority, France
Fiaccabrino, V. Nuclear Safety Authority, France
Fukuda, T. Nuclear Regulation Authority, Japan
Garg, R. Canadian Nuclear Safety Commission, Canada
Gauthier, G. Institute for Radiological Protection and Nuclear Safety, France
Hirose, M. Nuclear Regulation Authority, Japan
Katona, T. Hungarian Atomic Energy Authority, Hungary
Komann, S. Federal Institute for Material Research and testing, Germany
Konnai, A. National Maritime Research Institute, Japan
Krochmaluk, J. Institute for Radiological Protection and Nuclear Safety, France
Lizot, M. T. Institute for Radiological Protection and Nuclear Safety, France
Malesys, P. World Nuclear Transport Institute
Moutarde, M. Institute for Radiological Protection and Nuclear Safety, France
Nöring, R. World Nuclear Transport Institute
Pilecki, L. Canadian Nuclear Safety Commission, Canada
Ramsay, J. Canadian Nuclear Safety Commission, Canada
Reiche, I. Federal Office for Radiation Protection, Germany
Sampson, M. Nuclear Regulatory Commission, United States of America
Sarkar, S. Australian Radiation Protection and Nuclear Safety Agency, Australia
Sert, G. Institute for Radiological Protection and Nuclear Safety, France
Vaclav, J. Nuclear Regulatory Authority of the Slovak Republic, Slovakia
Yagihashi, H. Nuclear Regulation Authority, Japan