<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>INF-05j(1) TRANSSC 31</td>
<td>F/2015/06 Rev.1 proposed by Japan with additional justification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROPOSAL

F/2015/06 Rev.1

SSR-6, § 680

680. For a package in isolation, it shall be assumed that water can leak into or out of all void spaces of the package, including those within the containment system. However, if the design incorporates special features to prevent such leakage of water into or out of certain void spaces, even as a result of error, absence of leakage may be assumed in respect of those void spaces. Special features shall include either of the following:

(a) Multiple high standard water barriers, not less than two of which would remain watertight if the package were subject to the tests prescribed in para. 685(b), a high degree of quality control in the manufacture, maintenance and repair of packagings, and tests to demonstrate the closure of each package before each shipment; or

(b) For packages containing uranium hexafluoride only, with a maximum uranium enrichment of 5 mass per cent uranium-235:

(i) Packagers where, following the tests prescribed in para. 685(b), there is no physical contact between the valve and any other component of the packaging other than at its original point of attachment and where, in addition, following the test prescribed in para. 728, the valve and the plug remain leaktight;

(ii) A high degree of quality control in the manufacture, maintenance and repair of packagings, coupled with tests to demonstrate closure of each package before each shipment.

RESOLUTION

[Additional justification proposed by Japan]

The leaktightness of UF6 cylinders is very important from critical safety point of view and adding "plug" as well as the valve in para.680 to remain leaktight for emphasis is reasonable. However, the plug is small and simple structure and completely different from the valve.

Attached document is an example of the experiment results to demonstrate the strength of the plug. It shows the plug remain leaktight even if significant deformation of it is occurred by physical contact with the valve.
PROPOSAL

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>contact. Furthermore, the integrity of the plug against the fire test after the drop test is also demonstrated by calculation with conservative assumptions. The demonstration of the integrity including leaktightness of the cylinder have been required by CA in details and there are no significant troubles so far. The current practice is reasonable and if it is necessary to clarify this concern, it is appropriate to add some text to the advisory material SSG-26.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSSC 30 WG 2

The WG supports the outcome of the TRANSSC 28 (June 2014), WG4 report.

“Plug and valve sides of 30B cylinders [and overpacks] are not symmetrical. A water leak at plug would impair criticality safety. The plug side should be examined as well as the valve side. The group recommends technical evaluation of performance of plug side in drop tests.”

X

TRANSSC SEPTEMBER MEETING WG 2

WG3 supported the requirement for absence of contact between plug and other components in view of providing equivalent safety margin to multiple barrier concepts. The proposal is supported without amendment.

WG3 recommends to replace “drain plug” by “plug” in both locations in order to be consistent with ISO 7195.

X

TRANSSC 31