Preparation of draft Special Provision (ICAO TI) for UN3507 (UF6 in EXCEPTED PACKAGE)

Background

At the ECOSOC sub-committee of experts on the transport of dangerous goods (45th session) meeting held in Geneva in June 2014, The Sub-Committee agreed to adopt document ST/SG/AC.10/C.3/2014/60 concerning subsidiary risks for uranium hexafluoride. In accordance with the principles behind special provisions 172 and 290 in the UN Model Regulations 18th revised edition, a Division 6.1 subsidiary risk was thus assigned to UN Nos. 2977 and 2978, in addition to the primary risk of radioactivity and the subsidiary risk of corrosivity, and the subsidiary risk should be indicated by a label. Uranium hexafluoride in excepted packages of less than 0.1 kg per package was assigned to Division 6.1 with subsidiary risks of corrosivity and radioactivity.

Output

1. Review how UN3507 is included in the SSR6 structure; particularly important if additional package requirements are needed for the Class 6.1 hazard
2. Draft Special Provision for the ICAO TI.
3. Propose text for a submission document to ICAO which provides a narrative of why the air transport of UN3507 is necessary (see INF Paper submitted to ICAO DGP at the October 2014 meeting as input material) and how the risks of UN3507 have been mitigated

Considerations

The submission will include a chemical toxicity calculation and the working group is requested to consider how this would be undertaken (who and review/checking mechanism).

The sublimation temperature of UF6 is to be considered in the context of possible temperatures experienced at airports during summer months.

If considered necessary, options to retain the HF generated during normal transport shall be developed including options such as the use of dry ice or the current stainless steel tube and valve assembly used by Safeguards being specified and subjected to leak, appropriate ambient temperatures, pressure differentials, and Type A drop tests, to demonstrate it will not leak should sublimation occur during normal transport.