Harmonized EUR revision E requirements corresponding to currently available technical solutions

Csilla TOTH - EUR Steering Committee
MVM Paks II Ltd., Hungary, Technical Director

43 NUSSC Meeting
EUR Revision E Project

Contents

• Project Overview

• Basic Safety Concept

• Changes due to Fukushima Lessons Learned

• Safety Classification
EUR Revision E Project

Objectives

A major objective of the EUR Utilities through the EUR document is to provide the basis for designing safe and competitive standard Nuclear Islands which can be licensed, built and operated in the majority of European countries with only minor variations, using a standard safety case and Standard Design studies.

The up-to-date harmonized requirements participate to establish a standard presenting no harm to environment and neighbouring population under any foreseeable circumstance.

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Project overview
Revision E was launched in April 2014 on the basis of 11 position papers

- 30 chapters and ~1500 pages: about 5500 requirements
- 16 EUR utilities involved
- 98 European experts
- 33 months of work (April 2014 - December 2016)

Technical scope of Revision E

- Safety
- Fukushima lessons learned
- Safety Classification
- Radiological consequences
- Probabilistic Safety Analysis (PSA)
- Instrumentation & Control (I&C)
- Pipe Break
- Grid Connection
- Seismic approach
- Layout
- Structure of document EUR

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Timeline

WENRA Safety Reference Levels for existing reactors (2007)
WENRA Safety Reference Levels for existing reactors (2008)
WENRA Safety Reference Levels for existing reactors (Sept. 2014)
WENRA Safety Report for new reactors (March 2013)
IAEA GSR Part 4 Rev. 1
IAEA SSR-2/1 Rev. 1
IAEA SSG-30
IAEA SSG-2 Rev. 1 (DS491 Step 8a)
ongoing EUR Revision
EUR Rev. D Oct 2012
EUR Rev. E
EUR Rev. C Apr 2001
Fukushima accident

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Documents used

IAEA: SF-1, GSR Part 4 Rev.1, SSR-2/1 Rev.1, SSG-2 Rev.1 (DS491, Step 8a), SSG-3, SSG-4, SSG-30, TECDOC 1791, TECDOC 626

ENSTO-E, ENSREG,....

- Requirements to be generally and functionally phrased
- The requirements of IAEA and WENRA have to retain their original wording as widely as possible for traceability reasons
 - The EUR terminology is preferred
 - Where contradictions occurred among the requirement sources, the IAEA terminology was used
 - Number of the requirements to be similar as in EUR Rev. D

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Main developments

<table>
<thead>
<tr>
<th>Category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>New structure:</td>
<td>EUR document more suited to « licensing » & « bidding » processes</td>
</tr>
<tr>
<td>New EUR Policies:</td>
<td>Safety ; Economics ; Environmental protection</td>
</tr>
<tr>
<td></td>
<td>Operational performance ; Human factors</td>
</tr>
<tr>
<td>Safety:</td>
<td>New chapter ; improved coherence with up-to-date international documents such as EURATOM Directives, WENRA Standards, IAEA guides, ..</td>
</tr>
<tr>
<td>Safety Classification:</td>
<td>New approach in line with IAEA SSG-30</td>
</tr>
<tr>
<td>Radiological consequences:</td>
<td>New safety objectives in line with WENRA</td>
</tr>
<tr>
<td>External hazards:</td>
<td>New approach for external hazards based on two levels of magnitude (WENRA)</td>
</tr>
<tr>
<td>I&C:</td>
<td>New chapter fully in line with IEC standards (61513, 60880, 62138, 61226)</td>
</tr>
<tr>
<td>PSA:</td>
<td>Update of EUR chapter in line with IAEA SSG-3 and SSG-4</td>
</tr>
<tr>
<td>Grid Connection:</td>
<td>EUR text in line with the new ENTSO-E Grid Code (June 2015)</td>
</tr>
<tr>
<td>Pipe Break:</td>
<td>Update of EUR requirements dealing with Break Preclusion and LBB</td>
</tr>
<tr>
<td>Layout:</td>
<td>Update of EUR requirements based on up-to-date international standards</td>
</tr>
</tbody>
</table>

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Defence in depth approach in EUR Rev. E

Level 3b consistent with WENRA

<table>
<thead>
<tr>
<th>Levels of defence in depth</th>
<th>Objective</th>
<th>Essential means</th>
<th>Engineering Design Rules</th>
<th>Radiological Impacts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>Prevention of abnormal operation and failures</td>
<td>Conservative design and high quality in construction and operation</td>
<td>EDR1</td>
<td>O1</td>
</tr>
<tr>
<td>Level 2</td>
<td>Control of abnormal operation and detection of failures</td>
<td>Control, limiting and protection systems and other surveillance features</td>
<td>EDR1</td>
<td>O2</td>
</tr>
<tr>
<td>Level 3a</td>
<td>Control of accident within the design basis</td>
<td>Safety systems and accident procedures</td>
<td>EDR2</td>
<td>O3</td>
</tr>
<tr>
<td>Level 3b</td>
<td>Control of complex sequences & prevention of core melt</td>
<td>Dedicated safety features and accident procedures</td>
<td>EDR2</td>
<td></td>
</tr>
<tr>
<td>Level 4</td>
<td>Control of severe plant conditions & releases</td>
<td>Dedicated safety features and accident management</td>
<td>EDR2</td>
<td></td>
</tr>
<tr>
<td>Level 5</td>
<td>Mitigation of radiological consequences of significant releases of radioactive material</td>
<td>Off-site emergency response</td>
<td>EDR2</td>
<td></td>
</tr>
</tbody>
</table>

Engineering Design Rules (EDR 1 & 2)
- Redundancy
- Diversification
- Independence
- Safety classification
- Analysis methods
- Safety assessment
- Boundary conditions

Radiological Impacts
- Radiological Objectives O1, O2 and O3 consistent with WENRA
- Radiological targets for O2 & O3 defined in consistency with EUR CLI

DiD concept Approach 1 in IAEA-TECDOC-1791
EUR Revision E Project

Terminology and analysis methods

Terminology has undergone a major revision based on IAEA and WENRA used terms.

Plant states (adopted from IAEA Table)

- Operational states have been extended from Normal Operation to Anticipated Operational Occurrences
- Accident Conditions have been extended to DEC
- There is no “Beyond Design”! All Design Conditions are included in the Design!

Safety Analysis methodologies

DBC 2-4

- three graded methodology
- preferred: “best estimate computer codes with conservative and/or realistic input data” coupled with uncertainty analysis
- idle: conservative approaches both in input data and in the codes themselves could be applied

DEC

- DEC A:
 - Best estimate approach with adequate level of confidence
 - Adequate margin with regard to Cliff Edge Effects
- DEC B:
 - Realistic Best estimate analysis
 - Uncertainty and sensitivity analysis to demonstrate robustness

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Changes due to Fukushima Lessons Learned

- Reinforcement of the prevention of Large Releases through additional design measures and requirements
- Supplement to the mitigation approach of severe accident situations through additional emergency equipment and procedures

Main changes:

- Natural phenomena and site hazards to be considered (DBEH & RSEH)
- Plant Autonomy - Long term safety
- Ultimate Heat Sink - Primary and consideration of loss of UHS
- Emergency Power Supply - Diversity, redundancy, independence, autonomy
- Spent Fuel Safety - Practical elimination of fuel uncovery
- Severe Accidents Management
- Multiple Units issue - Shared systems, inter-connections
- Provisions for connecting points of non-permanent equipment
- Specific issues - fail-safe design concept, independence in I&C design
- Other considerations: specific sequences (UHS + SBO, ELAP) considered to define provisions (like Non Permanent Equipment and connection points)
- There is no “Beyond Design” concept

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Strengthened potential against external hazards

DBEH: Design Basis External Hazard
- plant is designed for
- mostly affect DBC1-4, maybe initiates Complex sequences (level 3b)
- conservative methodology
- radiological objective: O2

RSEH: Rare and Severe External Hazard
- for probabilistic evaluation that O3 objectives are met (applies at level 4)
- Complex sequences may be initiated (3b)
- realistic evaluation and best estimate rules
- Environmental condition resistance level 2

to set adequate margin to avoid cliff edge effect
EUR Revision E Project

For Site Specific Design:
Severity levels on Return Period for Natural External Hazards:

<table>
<thead>
<tr>
<th>Natural External Hazard</th>
<th>Design Basis External Hazard level</th>
<th>Rare and Severe External Hazard level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthquake</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Extreme rainfall</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>External flooding</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Extremes of air temperatures & humidity</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Extremes of heat sink temperatures (drought)</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Extreme wind</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Tornadoes and associated missiles</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Lightning</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Snow</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Heat sink clogging by Biological phenomena (seaweeds, fish, marine growth)</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

Design Basis External Hazard
- DBEH value > 10^{-4}/year

Rare and Severe External Hazard
- RSEH value $<< 10^{-4}$/year

For Standard EUR plant Design
Reference standard values both for DBEH and RSEH have been formulated by participating utilities (European balanced values representative of an European mean site, to permit an easy adaptation in each European country)

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Plant autonomy

Ultimate heat sink and electric power supply:

• Capability should be ensured for 7 days without off-site support in all plant states (increased from 72 hours).
• Raw water reserves shall ensure for 30 days autonomy in case the UHS is provided by water reservoirs
• Autonomy objectives are also valid for RSEH (Rare and Severe External Hazard)

Non-Permanent Equipment (NPE):

• No on-site NPE shall be credited in the safety demonstration (irrespective whether it is light or heavy) during the first 72 h following the accident initiation
• Use of light NPE after 24 h in case of Complex Sequences or Severe Accident is allowed when safety classified.
• Off-site NPE can be credited after 7 days only (increased from 72 h)*

* alternative solutions after 72 h (like heavy NPE, emergency response organization, regional or national Non Permanent Equipment* storage centers, etc) can be envisaged at site specific design if allowed according to the specific country regulation. The efficiency of such alternative solution is to be demonstrated

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
EUR Revision E Project

Spent fuel pool (SFP) cooling

- Practical elimination of accident sequence involving fuel melt
- Spent fuel pool cooling function to be ensured in Rare and Severe External Hazards
- Structural integrity to be maintained for internal hazards, Design Basis External Hazard (DBEH) and Rare and Severe External Hazard (RSEH)
- 2 independent Spent fuel pool water level monitoring instrumentation
- Loss of Spent fuel pool cooling function due to SBO and/or Loss of Ultimate Heat Sink considered in the rev E requirements (Alternate Power Supply, provisions for the management of the boiling situations, till cooling function is reinstated)
- Robustness provisions for total loss of Spent fuel pool cooling function

Csilla Toth, EUR SC, MVM Paks II Ltd., Hungary
Safety Classification (Concept)

- Introduction of four factors for safety significance analysis
- Design provisions are classified directly based on the severity of their failure independently of their function
- Direct link between safety function categories and safety classes
- Harmonised with IAEA SSG-30
(a) Cat.2 functions can be credited if it is demonstrated that the consequences of their failure are of “medium severity”;
(b) Cat.3 functions can be credited if it is demonstrated that the consequences of their failure are of “medium severity”;
(c) Cat.2 if the function is designed to provide a backup of a Cat.1 function; Cat.3 in other cases.
Environmental condition resistance levels

Level 1
Shall be applied to all SSCs which are required:
- to remain functionally operable and/or structurally intact in **DBC 2-4**
- in case of **DBEH (Design Basis External Hazard)**
- conditions, to meet the Safety Objective for accident without core melt
- in case of Complex Sequence which is not initiated by **RSEH (Rare and Severe External Hazard)**

Level 2
Shall be applied to SSCs required:
- in case of **Severe Accidents** or event initiated by **RSEH (Rare and Severe External Hazard)**
- , to meet the safety objective for Accidents with Core melt
- for handling Complex Sequences initiated by **RSEH**

Level S
- SSCs which themselves are not required to remain operable or structurally intact, but whose failure could prevent SSC assigned to **Level 1** and **Level 2** from functioning as designed shall be assigned to **Level S**
EUR Revision E Project

Thank you for your attention!